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1. Rolling dice: Two fair four-sided tetrahedral dice are rolled simultaneously. Let the
random variable X be the absolute difference of the two rolls.

1.1) (5 points) Calculate the PMF, the expected value, and the variance of X .

1.2) (5 points) Plot the PMF of X2 and compute E
󰁫
X2

󰁬

2. The Problem of Points: let’s look at a problem that played an important historical
role in the development of probability theory. The problem of points, also called the
problem of division of the stakes, was posed by the French nobleman and gambler
Chevalier de Méré (a.k.a Antoine Gombaud) in the 17th century to Pascal, who intro-
duced the ideas that the stake of an interrupted game should be divided in proportion
to the players’ conditional probabilities of winning given the state of the game at the
time of interruption. Pascal worked out some special cases and through a correspon-
dence with Fermat1.

The problem led Pascal to the first explicit reasoning about what today is known as
an expected value or expectation. The problem may look easy now, but back in the
time when probability theory was non-existent, it required some greatest mathemat-
ical minds to solve it. Now let’s look at a different but similar version of the problem:

Han Meimei and Li Lei play a round of golf (18 holes) for a ¥50 stake, and their prob-
abilities of winning on any one hole are p and 1 − p, respectively, independent of their
results in other holes. When a person wins one hole, he or she will get one point. After
a whole round (18 holes) the person with the highest points gets ¥50, and the other
person gets nothing. If there is a draw, each of them will get ¥25. At the end of 10
holes, Han Meimei has 6 points and Li Lei has 4 points. Then Li Lei receives an urgent

1Check in the pictures, which one is Pascal and which one is Fermat?
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call and has to leave for work, and he suggests dividing the stake. They both agree
that a fair way of dividing the stake is to split the ¥50 based on their probabilities of
winning had they completed the whole round. The question is: how exactly?

2.1) (5 points) Let the random variable H represent the final score of Han Meimei
had they completed the whole round. Compute the PMF H(h) and the expected
value of H .

2.2) (5 points) Let the random variable L represent the final score of Li Lei had they
completed the whole round. Compute the PMF L(l) and the expected value of
L.

2.3) (10 points) Let event A={Han Meimei would win if they were to complete the
whole round}, event B={They would end up with a draw if they were to complete
the whole round} and event C={Li Lei would win if they were to complete the
whole round}. Compute P (A), P (B) and P (C). Note: algebraic or numerical
expressions do not need to be simplified in your answers.

2.4) (71/2 points) Let the random variable X represent the money Han Meimei would
get had they completed the whole round, and Y that of Li Lei. They both agree
that Han Meimei and Li Lei should get the amounts of E [X] and E [Y ], respec-
tively. Compute E [X] and E [Y ]. Note: algebraic or numerical expressions do
not need to be simplified in your answers.

3. Who is correct? In a class of 25 students, 11 of them have type O blood, 6 type A, 5
type B and 3 type AB. If we randomly select 5 students from them, and let the random
variable X represent the number of students with type B in them. Now we want to
compute the PMF X(x).

3.1) (21/2 points) Han Meimei approaches the problem in this way: the selection is
random, and all outcomes are equally likely. Therefore, she can use the discrete
uniform law to calculate probabilities. The total number of outcomes in the sam-
ple space is |Ω| =

󰀓
25
5

󰀔
. To figure out the the number of outcomes of having k stu-

dents with type B blood in the sample, she divides the process into two stages.
The first stage is to choose k people from the 5 students with blood type B in
the class, and the second stage is to choose 5 − k people from the other 20 stu-
dents. The total number of outcomes is the simple multiplication of the number
of choices in each stage. Now, write the PMF constructed by Han Meimei.

3.2) (21/2 points) Li Lei thinks in a different way: the probability is kind of a relative
frequency. Therefore, the probability of having a random student with blood
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type B is 5 out of 25. That is 0.2. If 5 students are chosen, the process of choosing
one student can be treated as a Bernoulli trial, and there are a total of 5 Bernoulli
trials. Therefore, the probability of observing k students with blood type B in the
sample can be simply calculated using a binomial distribution. Now, write the
PMF constructed by Li Lei.

3.3) (5 points) Based on the previous two PMFs you just computed, finish the follow-
ing table to see if they are different or not (Hint: use the COMBIN function in Excel
to help calculate the binomial coefficients.):

k P (X = k) by Han Meimei P (X = k) by Li Lei

0

1

2

3

4

5

3.4) (21/2 points) Who do you think is correct and who is wrong? Explain your an-
swers.

3.5) (5 points) In a different class of 256 students, of which 110 of them have type O
blood, 60 type A, 50 type B and 36 type AB. If we randomly select 5 students,
and let the random variable Y represents the number of students with type B in
them. Repeat the analysis in 3.1), 3.2) and 3.3) (i.e. compute the PMF pY (y) using
Han Meimei’s and Li Lei’s methods, respectively, and compare them in a table).
What do you notice about the difference between probabilities calculated by Han
Meimei’s and Li Lei’s ways?

4. (21/2 points) Checking independence of a collection of event: During the lecture, we
made a definition on the independence of a collection of events by using a multiplica-
tion equation (Lecture 8 Slide 6). Now suppose we have a collection of n events, how
many times do you need to use the equation in order to check if they are independent
or not?

5. (21/2 points) Telecommunication: In a terrible environment, the probability of suc-
cess in sending a character by wireless is 3

7 . What is the probability that 22 characters
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out of 44 are sent successfully, assuming the results of sending each character are in-
dependent?

6. Renal Disease: The presence of bacteria in a urine sample (bacteriuria) is sometimes
associated with symptoms of kidney disease in women. Suppose a determination of
bacteriuria has been made over a large population of women at one point in time and
5% of those sampled are positive for bacteriuria.

6.1) (21/2 points) If a sample size of 5 is selected from this population, what is the
probability that 1 or more women are positive for bacteriuria?

6.2) (21/2 points) Suppose 100 women from this population are sampled. What is the
probability that 3 or more of them are positive for bacteriuria?

One interesting phenomenon of bacteriuria is that there is a turnover; that is, if bac-
teriuria is measured on the same woman at two different time points, the results are
not necessarily the same. Assume that 20% of all women who are bacteriuric at time
0 are again bacteriuric at time 1 (1 year later), whereas only 4.2% of women who were
not bacteriuric at time 0 are bacteriuric at time 1. Let X be the random variable repre-
senting the number of bacteriuric events over the two time periods for 1 woman and
still assume that the probability that a woman will be positive for bacteriuria at any
one exam is 5%.

6.3) (21/2 points) What is the probability distribution of X?

6.4) (21/2 points) What is the expected value of X?

6.5) (21/2 points) What is the variance of X?

7. Otolaryngology: Assume the number of episodes per year of otitis media, a rare dis-
ease of the middle ear in early childhood, follows a Poisson distribution with param-
eter λ = 1.6 episodes per year.

7.1) (2 points) Find the probability of getting 3 or more episodes of otitis media in the
first 2 years of life.

7.2) (2 points) Find the probability of not getting any episodes of otitis media in the
first year of life.

8. The Poisson process, the exponential distribution and memorylessness: We have in-
troduced the binomial random variable, which models the number of successes after
performing n independent Bernoulli trials. When n → ∞, we see that the binomial
PMF becomes the Poisson PMF. When n → ∞, how should we interpret n? We said
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that we could think of it as performing Bernoulli trials continuously in time/space.
Now, let’s look at this interpretation in more details using “the number of visitors to
a website” as an example. Empirically, it is reasonable to assume that the number of
visitors to a website in a given time window follows a Poisson distribution. This Pois-
son PMF only has one parameter, and it is λ visitors per hour. Now let’s keep tracking
visitors along a time axis, starting at 0:

time0

arrival #1

arrival #2

arrival #3

The visitors are the events of our interest. Therefore, when the website has a visitor, we
say that “an event arrives”. Recall from Lecture 11, slide 16, the Poisson distribution
has the following properties:

i. The probability that a certain number of events occur within an interval is propor-
tional to the length of the interval and is only dependent on the length of the interval;

ii. Within a single interval, an infinite number of occurrences of the event are theoret-
ically possible, i.e. not restricted to a fixed number of trials;

iii. For a particular interval, the events occur independently both within and outside
that interval.

8.1) (11/2 points) Now, let the random variable (r.v.) A represent the number of ar-
rivals in the first 15 minutes, write the PMF of A.

8.2) (11/2 points) Let the r.v. B represent the number of arrivals in a particular time
interval with a length of t hours. Write the PMF of B.

8.3) (11/2 points) Now, we observed that there are 5 arrivals during the first hour.
Given that has occurred and let the r.v. C represent the number of arrivals in
the next time interval of length t, write the PMF of C.

The above model described is called a Poisson process. Due to the independence of
each arrival, the average number of arrivals for any time interval only depends on the
length of the interval. What has already happened in the past does not matter.

Now let’s shift our interest to time. Specifically, we focus on the waiting time between
two consecutive arrivals. We have a sequence of random variables as follows:
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T1 represents the time between the start (time 0) and the 1st arrival;

T2 represents the time between the 1st and the 2nd arrivals;

T3 represents the time between the 2nd and the 3rd arrivals;
...

8.4) (11/2 points) Which of the following are correct about T1, T2, T3, · · · (tick all that
are correct):

© They are Poisson random variables
© They are Bernoulli random variables
© They are Binomial random variables
© They are continuous random variables
© They all have the same type of distribution

I’m going to tick one answer for you for the above question: their distributions are of
the same type! Why? Think about this in the following scenario:

time0

arrival #n-1 arrival #n

start tracking

tn

Imagine your friend has been tracking the number of visitors from the start, and he
calls you in when the (n − 1)th visitor arrives at the website, and then you replace him
and start tracking from there. Since each arrival is independent of each other, what
happens in the past does not affect future arrivals. You don’t really care about how
many visitors have already arrived. It is a fresh start. For you, it is exactly the same as if
you start tracking from the start (time 0). Therefore, all of those random variables have
the same distribution. This is called “the fresh start” property, or memorylessness.

Now, to compute their probability distribution, we only need to figure out one of them.
As always, we pick the simplest one. That is, T1. One common trick to get the prob-
ability distribution of a random variable is to compute its CDF, and then take the
derivate. Now, look at the following picture:
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time0 t1

arrival #1

At the time t1, the first visitor arrives. It is easy to see that the blue part represents the
event { T1 takes a value greater than t1 }. Therefore, the probability of the blue event
is P (T1 > t1).

8.5) (11/2 points) P (T1 = t1) =

8.5)

8.6) (11/2 points) How to calculate the probability of the event {T1 takes a value greater
than t1 }? Think about this: the blue event is equivalent to which of the following:

© No arrivals in the time interval [t1, +∞)
© No arrivals in the time interval [0, t1]
© Exactly one arrival in the time interval [t1, +∞)
© Exactly one arrival in the time interval [0, t1]

8.7) (5 points) Based on your choice, compute P (T1 > t1). Express the probability
using λ and t1. Hint: use the Poisson PMF for the calculation.

8.8) (11/2 points) Recall that the CDF of a random variable is defined as FX(x) =
P (X 󰃑 x). Compute the CDF of the random variable T1:

FT1(t1) =

8.9) (4 points) Recall that the PDF of a random variable is just the derivative of its
CDF. Compute the PDF of the random variable T1:

T1(t1) = F′
T1

(t1) =

Since all of T1, T2, T3, · · · have the same type of distribution. You just computed the
PDF for all of them. You can write it in a more general form by replacing T1 with X ,
and it should look like this:

X(x) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

λe−λx, when x 󰃍 0

0, otherwise
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That is the PDF of the exponential distribution. It is a very useful probability distri-
bution to model the waiting time between independent events in a Poisson process. It
only has one parameter: λ, which should be positive. Here, λ > 0 is often called the
rate parameter. Because as λ becomes larger, the time between two events becomes
smaller. In the above example, larger λ means the website get visited more frequently.
The shape of the distribution with different λ looks like this:

λ = 0.5
λ = 1
λ = 1.5
λ = 2

0 1 2 3 4 5

0

0.5

1

1.5

x

X
(x

)

9. * Gamma Distributions: Let’s look at a slightly different example about the waiting
time. In a Poisson process, we introduce a new random variable W to denote the
waiting time until the α-th arrivals:

time0 w

1st

arrival
2nd

arrival
3rd

arrival · · · · · ·

· · · · · ·

(α − 1)th
arrival

α-th
arrival

9.1) (1 point) The blue event {W takes a value greater than w } is equivalent to which
of the following:

© Exactly α arrivals in the time interval [0, w]
© Exactly α − 1 in the time interval [0, w]
© No more than α (󰃑 α) arrivals in the time interval [0, w]
© No more than α − 1 (󰃑 α − 1) arrivals in the time interval [0, w]

9.2) (1 point) Based on your answer, compute P (W > w).

9.3) (1 point) Compute the CDF FW (w).
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9.4) (1 point) Compute the PDF by taking the derivative of the CDF. You need to be
patient so that many terms will be cancel out. You should be able to get:

W (w) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

λα

(α − 1)! e−λwwα−1 , when w > 0

0 , otherwise

This is the Erlang PDF of order α. Since there is an (α − 1)! term in the denominator,
the values of α need to be integers. Since the 18th century, many brilliant mathemati-
cians have been working on extending the factorial to non-integers. You can check the
Wikipedia page if you are interested in the history.

Eventually, we have what is known today as the Gamma function:

Γ(α) =
󰁝 ∞

0
xα−1e−xdx, where α > 0

When α is an integer, Γ(α) = (α − 1)!

Now, if we replace the (α − 1)! in the denominator of the Gamma distribution with
Γ(α), we have the general form of the PDF of the Gamma distribution:

X(x) =
λα

Γ(α) e−λxxα−1, where x > 0, λ > 0, α > 0

In this case, α is the shape parameter, and λ is the rate parameter. Alternatively, if we
let θ = 1

λ
, the Gamma distribution can be written as the following form, which is also

used in many cases:

X(x) =
1

Γ(α) θα
e− x

θ xα−1, where x > 0, θ > 0, α > 0

In this form, α is the shape parameter, and θ is the scale parameter. Those are still
valid probability distributions, but the good thing here is: the shape parameter α can
take non-integers as well. This makes the Gamma distributions having more flexible
shapes which can be used to model many continuous data. Apparently, the exponen-
tial distribution is just Gamma distributions with α = 1, and the Erlang distribution
is just Gamma distributions with integer shape parameters α. The distributions with
different shape parameters α and scale parameters θ looks like this:
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θ = 1
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