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The content of this Extra Reading Material is a bit long, so I put a summary

at the beginning of this document:

1 Summary

• The normal PDF satisfies the normalisation axiom:
󰁝 ∞

−∞
X(x)dx = 1

• The mean of a normal random variable is µ: E[X] = µ

• The variance of a normal random variable is σ2: Var (X) = σ2

• A function of a normal random variable is still normal:

X ∼ N (µ, σ2) and Y = aX + b, then

Y ∼ N (aµ+ b, a2σ2), where a, b are constants

• The Convolution formula:

Z = X + Y , X and Y are independent, then

Z(z) =
󰁛

x

X(x) Y (z − x) in the discrete case, or

Z(z) =

󰁝 ∞

−∞
X(x) Y (z − x)dx in the continuous case

• The sum of two independent normal random variables is still normal:

X ∼ N (µ1, σ
2
1), Y ∼ N (µ2, σ

2
2), and X,Y are independent

X + Y ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

Page 3 of 14



Fall, 2024 Lecture 13

2
󰁕∞
−∞ X(x)dx = 1

The title means that the normal PDF is a valid probabilistic model. Therefore,

we need to prove that
󰁝 ∞

−∞

1
√
2πσ

e−
(x−µ)2

2σ2 dx = 1 (1)

Proof. The exponent of e is a bit complicated and annoying. A common trick of

reduce the complexity is by change of variables . Let

t =
x− µ
√
2σ

(2)

and then we have

dt =
1

√
2σ

dx

⇒ dx =
√
2σdt (3)

Put equations (2) and (3) into the left-hand side of equation (1), we have

󰁝 ∞

−∞

1
√
2πσ

e−
(x−µ)2

2σ2 dx =

󰁝 ∞

−∞

1
√
2πσ

e−t2
√
2σ dt

=
1
√
π

󰁝 ∞

−∞
e−t2dt =

1
√
π
·
√
π = 1 (4)

Note that the blue part of equation (4) is the famous Gaussian integral , and

its value is
√
π.

3 E [X ] =
󰁕∞
−∞ x X(x)dx = µ

The mean of a normal random variable is µ. By definition, we want to calculate:

󰁝 ∞

−∞
x

1
√
2πσ

e−
(x−µ)2

2σ2 dx (5)
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Again, use the same change-of-variable trick and put equations (2) and (3)

into equation (5), we have:

󰁝 ∞

−∞
x

1
√
2πσ

e−
(x−µ)2

2σ2 dx =

󰁝 ∞

−∞
(
√
2σt+ µ)

1
√
2πσ

e−t2
√
2σdt

=

󰁝 ∞

−∞
(
√
2σt+ µ)

1
√
π
e−t2dt =

1
√
π

󰁝 ∞

−∞
(
√
2σt+ µ)e−t2dt

=
1
√
π

󰀕󰁝 ∞

−∞

√
2σte−t2dt+

󰁝 ∞

−∞
µe−t2dt

󰀖

=
1
√
π

󰀕√
2σ

󰁝 ∞

−∞
te−t2dt+ µ

󰁝 ∞

−∞
e−t2dt

󰀖
(6)

Now look at the blue part of equation (6). It consists of two terms. The first

term is
√
2σ

󰁕∞
−∞ te−t2dt. The function te−t2 is apparently an odd function . If

we integrate from −∞ to ∞, the area under the curve below and above the axis

will cancel out1, so the the first term is 0. The second term contains a Gaussian

integral
󰁕∞
−∞ e−t2dt =

√
π. Therefore equation (6) becomes:

󰁝 ∞

−∞
x

1
√
2πσ

e−
(x−µ)2

2σ2 dx =
1
√
π
(0 + µ

√
π) = µ

Therefore, we have finished the calculation:

E [X] =

󰁝 ∞

−∞
X(x)dx = µ

4 Var (X) = σ2

Since we know that

Var (X) = E
󰀅
X2

󰀆
− (E [X])2 = E

󰀅
X2

󰀆
− µ2

What is left for us is to compute E
󰀅
X2

󰀆
. By definition, we have:

E
󰀅
X2

󰀆
=

󰁝 ∞

−∞
x2

1
√
2πσ

e−
(x−µ)2

2σ2 dx =
1

√
2πσ

󰁝 ∞

−∞
x2e−

(x−µ)2

2σ2 dx (7)

1This is not very strict. Strictly speaking, this is an improper integral . What we should

do here is to separate the integral:
󰁕∞
−∞ te−t2 =

󰁕 0

−∞ te−t2 +
󰁕∞
0

te−t2 . Then we show that they
both converge.
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Let’s use the same trick again by letting t = x−µ√
2σ
. Then we have:

x2 = (
√
2σt+ µ)2 = 2σ2t2 + 2

√
2σµt+ µ2 (8)

Now we put equations (3) and (8) into equation (7), we have:

E
󰀅
X2

󰀆
=

1
√
2πσ

󰁝 ∞

−∞
(2σ2t2 + 2

√
2σµt+ µ2)e−t2

√
2σdt

=
1

√
2πσ

󰀕󰁝 ∞

−∞
2
√
2σ3t2e−t2dt+

󰁝 ∞

−∞
4σ2µte−t2dt+

󰁝 ∞

−∞

√
2σµ2e−t2dt

󰀖
(9)

The blue part of equation (9) consists of three terms. Let’s look at them one by

one in reverse order, because the last two terms are easier to compute. First, let’s

look at the third term, there is a Gaussian integral there:

󰁝 ∞

−∞

√
2σµ2e−t2dt =

√
2σµ2

󰁝 ∞

−∞
e−t2dt =

√
2σµ2 ·

√
π =

√
2πσµ2 (10)

Then let’s look at the second term:
󰁝 ∞

−∞
4σ2µte−t2dt = 4σ2µ

󰁝 ∞

−∞
te−t2dt = 0 (11)

We have already seen this when we were computing the mean. The integration

from −∞ to ∞ is 0.

Finally, let’s look at the first term:

󰁝 ∞

−∞
2
√
2σ3t2e−t2dt = 2

√
2σ3

󰁝 ∞

−∞
t2e−t2dt (12)

The integral in equation (12) is a slightly more difficult to do. First, we notice that

t2e−t2 is an even function , so
󰁕∞
−∞ t2e−t2dt = 2 ·

󰁕∞
0

t2e−t2dt, roughly2. Then

equation (12) becomes:

󰁝 ∞

−∞
2
√
2σ3t2e−t2dt = 4

√
2σ3

󰁝 ∞

0

t2e−t2dt (13)

Now we need to use integration by parts , which tells us:

󰁝
u(x)v′(x) = u(x)v(x)−

󰁝
u′(x)v(x)dx

2Once again, we see an improper integral . Strictly speaking, what we should do here is󰁕∞
−∞ t2e−t2dt =

󰁕 0

−∞ t2e−t2dt+
󰁕∞
0

t2e−t2dt, and show they both converge and their values are
the same.
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Note that
󰀓
e−t2

󰀔′
= −2te−t2 . We could re-write the integral part of equation (13)

and we have: 󰁝 ∞

0

t2e−t2dt =

󰁝 ∞

0

󰀣
−
1

2
t

󰀤
·
󰀓
−2te−t2

󰀔
dt (14)

We can let u(t) = −1
2
t and v′(t) = −2te−t2 , so v(x) = e−t2 . Therefore, by using

integration by parts, equation (14) becomes (note there is a Gaussian integral):

󰁝 ∞

0

t2e−t2dt =

󰀥
−
1

2
t · e−t2

󰀦∞

0

−
󰁝 ∞

0

−
1

2
e−t2dt =

󰀥
−

t

2et2

󰀦∞

0

+
1

2

󰁝 ∞

0

e−t2dt

= lim
m→∞

󰀥
−

t

2et2

󰀦m

0

+
1

2
·
√
π

2

= lim
m→∞

󰀣
−

m

2em2

󰀤
−

󰀣
−

0

2e02

󰀤
+

1

4

√
π (15)

The first limit is in the ∞
∞ form, so we could use the L’Hopital’s rule . Then

equation (15) becomes:

󰁝 ∞

0

t2e−t2dt = lim
m→∞

󰀣
−

m′

(2em2)′

󰀤
− 0 +

1

4

√
π

= lim
m→∞

󰀣
−

1

4mem2

󰀤
+

1

4

√
π

= 0 +
1

4

√
π =

1

4

√
π (16)

Put equation (16) into equation (13), we have solved the first term from the blue

part of equation (9):

󰁝 ∞

−∞
2
√
2σ3t2e−t2dt = 4

√
2σ3

󰁝 ∞

0

t2e−t2dt

= 4
√
2σ3 ·

1

4

√
π =

√
2πσ3 (17)

Finally, put equations (17), (11) and (10) into equation (9), we have:

E
󰀅
X2

󰀆
=

1
√
2πσ

(
√
2πσ3 + 0 +

√
2πσµ2) = σ2 + µ2 (18)
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Now, we can easily get

Var (X) = E
󰀅
X2

󰀆
− (E [X])2 = σ2 + µ2 − µ2 = σ2

5 A Linear Function of A Continuous Random Vari-

able

5.1 The General Case

Let’s first have a look what happens to a random variable in general when we

apply a linear function to it. Let X be a continuous random variable with a PDF

X(x). Let the random variable Y be:

Y = aX + b

where a ∕= 0. What is the PDF of Y ?

Again, we should start with something simple. Consider this: if X and Y

were discrete random variables, the situation becomes straightforward. We would

have:

Y (y) = P (Y = y) = P (aX + b = y) = P
󰀕
X =

y − b

a

󰀖

However, for continuous random variables, the probability of getting a specific

value is 0. Therefore, it is not very helpful to use the strategy above. We need to

work on intervals for continuous random variables. The trick3 here is to use the

CDF to solve the problem.

5.1.1 When a > 0

Consider the case where a > 0, we have:

FY (y) = P (Y 󰃑 y) = P (aX + b 󰃑 y)

= P
󰀕
X 󰃑 y − b

a

󰀖
= FX

󰀕
y − b

a

󰀖

3You should know this trick from Assignment 3.

Page 8 of 14



Fall, 2024 Lecture 13

Now, that tells us the CDF of Y in terms of the CDF of X:

FY (y) = FX

󰀕
y − b

a

󰀖

Since the derivate of the CDF is the PDF, now we can simply find out the PDF

by differentiating both sides of the above equation like this:

Y (y) = F′
X

󰀣
y − b

a

󰀤
=

1

a
· X

󰀕
y − b

a

󰀖
(19)

5.1.2 When a < 0

Now consider the case where a < 0. Using the similar technique, we have:

FY (y) = P (Y 󰃑 y) = P (aX + b 󰃑 y)

= P
󰀕
X 󰃍 y − b

a

󰀖
= 1− P

󰀕
X 󰃑 y − b

a

󰀖

= 1− FX

󰀕
y − b

a

󰀖

Taking the derivate at the both sides of the above equation, we have:

Y (y) = −F′
X

󰀕
y − b

a

󰀖
= −1

a
· X

󰀕
y − b

a

󰀖
(20)

Combine the cases where a > 0 (19) and a < 0 (20), we have:

Y (y) =
1

|a| · X

󰀕
y − b

a

󰀖
(21)

5.2 A Linear Function of A Normal Random Variable

Now, consider the normal random variable X ∼ N (µ, σ2), what is the PDF of the

random variable Y = aX + b ? We are given that:

X(x) =
1

√
2πσ

e−
(x−µ)2

2σ2
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Using equation (21) from the previous section, we have:

Y (y) =
1

|a| · X

󰀕
y − b

a

󰀖

=
1

|a| ·
1

√
2πσ

e
−
(y−b

a
− µ)2

2σ2

=
1

√
2πσ|a|

e
−
(y − b− aµ)2

2a2σ2 (22)

Re-write equation (22) a bit, we have:

Y (y) =
1

√
2π · |a|σ

e
−
[y − (aµ+ b)]2

2(|a|σ)2 (23)

From equation (23), we can easily see that Y ∼ N (aµ+ b, a2σ2).

6 The PMF or PDF of The Sum of Independent

Random Variables

6.1 The Sum of Independent Random Variables In General

There are many situations that different random variables get added together.

Therefore, it is important to know how to compute the probability of the sum of

different random variables. I’m going to say it again: whenever we start to do

something new, always, always start with something simple to get an

intuition.

For a start, we can look at the simplest case: the sum of two independent

random variables. Let X and Y be two independent random variables. Now let

the random variable Z = X + Y . We want to know the probability distribution

of Z in terms of X and Y .
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6.1.1 The Discrete Case

Again, let’s begin with simpler random variables, that is, the discrete random

variables.

If X and Y are discrete random variables, the situation is straightforward.

We have:

X(x) = P (X = x)

Y (y) = P (Y = y)

Now we could derive the PMF of Z as follows, which involves in finding the

probability for all possible values of Z. Say, we want to calculate P (Z = 3). How

do we do this? We need to find all possible pairs of (X = x,Y = y) that satisfy

x+ y = 3, e.g. (1,2) (2,1) (-1,4) etc.. That is:

P (Z = 3) =
󰁛

{(x,y) |x+y=3}

P (X = x,Y = y)

Since X and Y are independent, then P (X = x,Y = y) = pX(x) · pY (y). Now,

in a more general term, we can find the PMF of Z as follows:

Z(z) =
󰁛

{(x,y) |x+y=z}

P (X = x,Y = y) =
󰁛

x

P (X = x,Y = z − x)

=
󰁛

x

X(x) Y (z − x) (24)

Equation (24) Z(z) =
󰁓

x X(x) Y (z− x) is called the convolution formula.

6.1.2 The Continuous Case

Now, let’s look at the continuous case. In this situation, we have X and Y be

two independent continuous random variables with known PDFs. Now we want

to derive the PDF of the random varible Z = X +Y . Since we already know the

discrete case, we can actually guess the formula in the continuous case, which is:

Z(z) =

󰁝 ∞

−∞
X(x) Y (z − x)dx

Now let’s justify the above formula. Let’s first look at Z when X takes some
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specific value x, meaning that we are looking at Z conditioned on X = x. Then

we want to figure out:

Z |X(z | x)

Since Z = X+Y , we have Z = Y +x, meaning that Z is a simple function of Y

when the value of X is set. Therefore, we should be able to figure out Z |X(z | x)
in terms of Y . How? Well ... in the same way that we derived the PDF of a

linear function of a random variable in Section 5. That is, use the same trick to

avoid integration, start with the CDF:

FZ|X(z|x) = P(Z 󰃑 z | x) = P(Y + x 󰃑 z | x)
= P(Y 󰃑 z − x | x)
= FY |X(z − x | x)

Now we take the derivative at both sides, we get:

Z |X(z | x) = Y |X(z − x | x)

Since X and Y are independent, we can remove the conditioning:

Z |X(z | x) = Y (z − x)

Therefore, by definition, we can get the joint PDF of Z and X as:

X,Z(x, z) = X(x) · Z|X(z|x) = X(x) Y (z − x)

Now we have the joint PDF of X and Z, but remember what we really want is

the PDF of Z. We can easily get this by integrating all possible x from the joint

PDF to get the marginal PDF of Z, which is what we want originally:

Z(z) =

󰁝 ∞

−∞
X,Z(x, z)dx =

󰁝 ∞

−∞
X(x) Y (z − x)dx

Hence, we have justified our guess, and that is the convolution formula for the

continuous cases.

6.2 The Sum of Independent Normal Random Variables

Since the normal random variables are quite common and useful, we are often

facing problems where we need to compute the probability of the sum of different

normal random variables.
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Let’s just start with simplest case: the sum of two normal random variables.

Let X ∼ N (µx, σ
2
x) and Y ∼ N (µy, σ

2
y) be two independent normal random

variables. We want to derive the PDF of Z = X + Y .

First, using the linearity of expectation, we have:

E[Z] = E[X + Y ] = E[X] + E[Y ] = µx + µy

Since X and Y are independent, we also have (check the Extra Reading Ma-

terial from Lecture 11 if you do not know why):

Var (Z) = Var (X + Y ) = Var (X) + Var (Y ) = σ2
x + σ2

y

We have easily derived the mean and the variance of Z. Now we need to figure

out the shape of Z. What is our best guess? Well ... intuitively, Z should also be

a normal random variable. Let’s see if we could justify our guess.

We know:

X(x) =
1

√
2πσx

e
− (x−µx)2

2σ2
x and Y (y) =

1
√
2πσy

e
− (y−µy)2

2σ2
y

Now start with the PDF of Z:

Z(z) =

󰁝 ∞

−∞
X(x) Y (z − x)dx

=

󰁝 ∞

−∞

1
√
2πσx

e
− (x−µx)2

2σ2
x

1
√
2πσy

e
− (z−x−µy)2

2σ2
y dx

=

󰁝 ∞

−∞

1
√
2πσx

√
2πσy

e
−
(x− µx)

2

2σ2
x

−
(z − x− µy)

2

2σ2
y dx

=

󰁝 ∞

−∞

1
√
2π

√
2πσxσy

e
−
σ2
y(x− µx)

2 + σ2
x(z − x− µy)

2

2σ2
xσ

2
y dx

Now we just need to be patient and manipulate the formula. With some algebra,
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we can get:

Z(z) =
1

√
2π

󰁳
σ2
x + σ2

y

e
−
[z − (µx + µy)]

2

2(σ2
x + σ2

y)

Apparently, Z ∼ N (µ = µx+µy, σ
2 = σ2

x+σ2
y). Check this Wikipedia page if you

are interested in the algebraic manipulation.
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