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The random variable X denotes certain metric (e.g. height, weight) we are

interested in from a population, and X ∼ N (µ, σ2). We draw a random sample

of size n from the population. Like we discussed during the lecture, a random

sample of size n can be thought as n i.i.d. random variables. That is:

X1,X2,X3, · · · ,Xn ∼ N (µ, σ2)

We have seen that the maximum likelihood estimator for σ2 is:

σ̂2 =
1

n

n

i=1

(X i − X̄)2

Then, what is E

σ̂2


? If E


σ̂2


= σ2, it is an unbiased estimator. Otherwise, it

is a biased one.

Now let’s have a look.

E

σ̂2


= E


1

n

n

i=1

(X i − X̄)2


=

1

n
E


n

i=1

(X2
i − 2X̄X i + X̄

2
)



=
1

n
E


n

i=1

X2
i − 2X̄

n

i=1

X i +
n

i=1

X̄
2



Note that:
n

i=1 X i = nX̄. Since X̄ remains the same for each i, we haven
i=1 X̄

2
= nX̄

2
. Replacing the blue terms above, we have:

E

σ̂2


=

1

n
E


n

i=1

X2
i − 2X̄ · nX̄ + nX̄

2


=

1

n
E


n

i=1

X2
i − nX̄

2



=
1

n


E


n

i=1

X2
i


− E


nX̄

2


(1)

Since Var (X) = E

X2


− (E [X])2, so we have E


X2


= Var (X) + (E [X])2,
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then,

E


n

i=1

X2
i


= E


X2

1


+ E


X2

2


+ E


X2

3


+ · · ·+ E


X2

n



= Var (X1) + (E [X1])
2 + Var (X2) + (E [X2])

2 + · · ·

+ Var (Xn) + (E [Xn])
2

= σ2 + µ2 + σ2 + µ2 + · · ·+ σ2 + µ2

= nσ2 + nµ2 (2)

Putting equation (2) into equation (1), we have:

E

σ̂2


= σ2 + µ2 − 1

n
· E


nX̄

2

= σ2 + µ2 − E


X̄

2


= σ2 + µ2 − (σ2
X̄ + µ2

X̄) (3)

According to the central limit theorem, we have µX̄ = µ and σ2
X̄

=
σ2

n
. Therefore,

equation (3) becomes:

E

σ̂2


= σ2 + µ2 −

σ2

n
− µ2 =

n− 1

n
σ2 ∕= σ2

Hence, it is not an unbiased estimator.
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