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Note that like many other distributions, we are always using the plural term

“distributions”, because they are a family of distributions. There are many t-

distributions. The parameter of a t-distribution is its degree of freedom , or df,

or DOF, or ν.

1 Derivation of The PDF

We start where we left from the lecture. We say that the random variable T has

the Student’s t-distribution with ν degree of freedom if:

T =
Z


U/ν

(1)

where Z ∼ N (0, 1), U ∼ χ2(ν), and Z,U are independent. Therefore, what we

know is

Z(z) =
1

√
2π

e−
z2

2 and fU (u) =
1

Γ

ν
2


2

ν
2

u
ν
2
−1e−

u
2

what we want now is the PDF of T : T (t).

There are a number of ways of deriving the PDF of Student’s t-distributions.

The first thing that comes to our mind should be the common trick to avoid inte-

gration that we have talked about in the Extra Reading Material from Lecture

13. That is, to work with the CDF and then take the derivative. Intuitively, we

should start:

FT (t) = P(T  t) = P

√
νZ

√
U

 t



but you see that there is a ratio of two random variables there, which is slightly

more difficult to work with. We will come back to this method in a future lecture

later.

Alternatively, we can do another trick that is similar to the procedures which

we used to derive the convolution formula . That is, we start with a joint PDF

of T and another random variable, either Z or U . Then we integrate over the

other random variable to get the marginal PDF of T , which is essentially T (t). If

you forget, go back and check the Extra Reading Material from Lecture 13.

If you do some initial trials, you will realise that the joint PDF T,U (t, u) is

slightly easier to compute compared to T,Z(t, z). Therefore, we start with the

easier one.

Page 2 of 9



Fall, 2024 Lecture 19

By definition, we have:

T,U (t, u) = U (u) · T |U (t|u) (2)

Now we need to rewrite T |U (t|u) in terms of Z. Whenever the random variable

U takes a number, T is a simple function of Z, so we could easily work out

T |U (t|u) using the common trick of working out CDF and taking the derivative:

FT |U (t|u) = P(T  t | u) = P

√
νZ
√
u

 t

u


= P


Z 

√
u

√
ν
t

u


= FZ |U

√
u

√
ν
t

u


Take the derivate at both sides, we have (note the extra coefficient before t):

T |U (t|u) =
√
u

√
ν

Z |U

√
u

√
ν
t

u


Since Z and U are independent, we could remove the conditioning between Z

and U . Therefore, we have1:

T |U (t|u) =
√
u

√
ν

Z |U

√
u

√
ν
t

u


=

√
u

√
ν

Z

√
u

√
ν
t



=

√
u

√
ν
·

1
√
2π

e−
u
2ν

t2 =

√
u

√
2πν

e−
u
2ν

t2 (3)

1If you think about it, equation (3) actually makes sense. When U takes the value u, then

T simply becomes a linear function of Z:
√
ν√
u
Z. Since Z ∼ N (0, 1), then it is easy to see

T ∼ N

0, ν

u


.
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Putting equation (3) back to equation (2), we have:

T,U (t, u) = U (u) · T |U (t|u) = U (u) ·
√
u

√
2πν

e−
u
2ν

t2

=
1

Γ(ν
2
)2

ν
2

u
ν
2
−1e−

u
2 ·

√
u

√
2πν

e−
u
2ν

t2

=
u

ν−1
2

2
ν+1
2 Γ


ν
2

√
πν

e
−u

2


1+ t2

ν



(4)

Now we integrate with respect to u at both sides of equation (4). Note that U is

non-negative. At the left-hand side, we get the marginal PDF of T , we have:

T (t) =
1

2
ν+1
2 Γ


ν
2

√
πν

 ∞

0

u
ν−1
2 e

−u
2


1+ t2

ν



du (5)

The blue part is very difficult to integrate, but it does look like a Gamma dis-

tribution that we talked about in a previous homework. Recall that the PDF of

a Gamma distribution is:

X(x) =
1

Γ(α)θα
xα−1e−

x
θ (6)

If you compare equation (6) to the blue part of equation (5), you will see some

commonality. Now we let the shape parameter α =
ν + 1

2
and the scale parameter

θ =
2

1 + t2

ν

. Then the Gamma distribution we have is:

X(x) =
1

Γ


ν + 1

2


·


2

1 + t2

ν

 ν+1
2

x
ν−1
2 e

−x
2


1+ t2

ν



Again, recall that the Gamma distribution describes the behaviour of non-negative

random variables. Therefore, if we integrate from 0 to ∞, we should get 1 (Check
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Section 3 for the proof if you are not sure). That is:

 ∞

0

1

Γ

ν+1
2


·


2

1+ t2

ν

 ν+1
2

x
ν−1
2 e

−x
2


1+ t2

ν



dx = 1

1

Γ

ν+1
2


·


2

1+ t2

ν

 ν+1
2

 ∞

0

x
ν−1
2 e

−x
2


1+ t2

ν



dx = 1

 ∞

0

x
ν−1
2 e

−x
2


1+ t2

ν



dx = Γ


ν + 1

2


·


2

1 + t2

ν

 ν+1
2

(7)

Note that the red part in equation (7) is the same as the blue part in equation

(5). Therefore, replacing it and equation (5) becomes:

T (t) =
1

2
ν+1
2 Γ


ν
2

√
πν

Γ


ν + 1

2


·


2

1 + t2

ν

 ν+1
2

=
Γ

ν+1
2



Γ

ν
2

√
πν✟✟✟2

ν+1
2

·
✟✟✟2

ν+1
2


1 + t2

ν

 ν+1
2

=
Γ

ν+1
2



Γ

ν
2

√
πν

·

1 +

t2

ν

− ν+1
2

Finally, that’s the scary PDF of Student’s t-distribution.

2 When ν → ∞

The PDF T (t) is a product consists of two basic terms. If the limit of each term

exist, the limit of the product is basically the product of the limit. Now let’s look

at them one by one.

We start with

1 + t2

ν

− ν+1
2

which is easier:
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lim
ν→∞


1 +

t2

ν

− ν+1
2

= lim
ν→∞

1

1 + t2

ν

 ν+1
2

= lim
ν→∞

1

1 + t2

ν

 1
2 ·


1 + t2

ν

 ν
2

= lim
ν→∞

1


1 + t2

ν

 1
2 ·


1 + t2/2

ν/2

 ν
2

(8)

Note that limν→∞


1 + t2

ν

 1
2
= 1. Then recall that when we derived the Poisson

PMF, we did a quick review of

lim
n→∞


1 +

a

n

n

= ea

Now we let a = t2

2
and n = ν

2
, and put back to equation (8), we have:

lim
ν→∞


1 +

t2

ν

− ν+1
2

= lim
ν→∞

1


1 + t2

ν

 1
2 ·


1 + t2/2

ν/2

 ν
2

=
1

1 · e t2

2

= e−
t2

2 (9)

Let’s see
Γ

ν+1
2



Γ

ν
2

√
πν

now. From the Stirling’s formula , we have the following

approximation:

Γ(n) ≈


2π

n

n
e

n
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Using that, and let k = ν
2
we have

lim
ν→∞

Γ

ν+1
2



Γ

ν
2

√
πν

= lim
k→∞

Γ

k + 1

2



Γ (k)
√
2πk

= lim
k→∞


2π

k + 1
2

·

k + 1

2

e

k+ 1
2


2π

k
·

k

e

k

·
√
2πk

= lim
k→∞

√
2π


k + 1

2


k + 1

2

e

k

·

k + 1

2

e

 1
2


2π

k
·
√
2πk ·


k

e

k

= lim
k→∞

√
2π


k + 1

2

− 1
2


k + 1

2

k

ek
·

k + 1

2

 1
2

e
1
2

2π ·
kk

ek

= lim
k→∞

√
2π✘✘✘✘✘✘

k + 1
2

− 1
2


k + 1

2

k

ek
· ✟✟✟✟✟

k + 1
2

 1
2

e
1
2

2π ·
kk

ek

= lim
k→∞

√
2π


k + 1

2

k

2πkke
1
2

= lim
k→∞

1
√
2π

·

k + 1

2

k

k

· e− 1
2 =

e−
1
2

√
2π

· lim
k→∞


1 +

1
2

k

k

Again, we see the same similar limit again. The cyan part is e
1
2 . Therefore, we

have:

lim
ν→∞

Γ

ν+1
2



Γ

ν
2

√
πν

=
e−

1
2

√
2π

· e 1
2 =

1
√
2π

(10)

Putting equations (8) and (10) back to the original PDF of Student’s t-distribution,

we have:

T (t) =
1

√
2π

e−
t2

2

meaning that T becomes the standard normal when ν → ∞.
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3 The Gamma PDF Satisfies The Normalisation Prop-

erty

The Gamma distribution with a shape parameter α and a scale parameter θ is

defined as:

X(x) =
1

Γ(α)θα
xα−1e−

x
θ , where x,α, θ are all positive

Alternatively, it can be parameterised with a shape parameter α and a rate pa-

rameter λ:

X(x) =
λα

Γ(α)
xα−1e−λx , where x,α,λ are all positive

Proof. Using the parameterisation of α and θ:

 ∞

−∞

1

Γ(α)θα
xα−1e−

x
θ dx =

1

Γ(α)θα

 ∞

0

xα−1e−
x
θ dx =

1

Γ(α)θ

 ∞

0

xα−1

θα−1
e−

x
θ dx

=
1

Γ(α)θ

 ∞

0


x

θ

α−1

e−
x
θ dx

Let t =
x

θ
, then dx = θdt. We have:

 ∞

−∞

1

Γ(α)θα
xα−1e−

x
θ dx =

1

Γ(α)θ

 ∞

0

tα−1 e−tθdt =
1

Γ(α)

 ∞

0

tα−1 e−tdt

By definition, the blue part is Γ(α). Therefore:

 ∞

−∞

1

Γ(α)θα
xα−1e−

x
θ dx =

1

Γ(α)
· Γ(α) = 1

Proof. Similarly, using the parameterisation of α and λ:

 ∞

−∞

λα

Γ(α)
xα−1e−λxdx =

λα

Γ(α)

 ∞

0

xα−1e−λxdx =
λ

Γ(α)

 ∞

0

(λx)α−1e−λxdx
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Again, let t = λx, then dx =
1

λ
dt. We have:

 ∞

−∞

λα

Γ(α)
xα−1e−λxdx =

λ

Γ(α)

 ∞

0

tα−1e−t
1

λ
dt = 1
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