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1 Errors (€) in OLS

In ordinary least square (OLS), we compute the squared errors against
the line (SEj,.) and let it take the minimum value. By the definition of SEj;,e:

n

SEjine = Z[yi — (Bo + Brxi))?

i=1

Now we want to find the values 3y and i, such that SEj,. takes the minimum

value. Therefore, we should have:

aSElino . aSEline

op - and ===

Now, let’s first re-write SEy,. with respect to Sy, i.e. using 5y as the variable:

n

SEiine = Z[y? —2y;(Bo + Brzi) + (Bo + Brzi)]

i=1

= S 12 — 20iB0 — 2ysBri + B2 + 2Bofrai + f2a?]
=1

— Z[/Bg + (2812 — 2y;) o + (yf — 2y B1w; + 512%2)]
i=1

line

9B

Now we let = 0, we have:

OSEine
8510 - Z[Qﬁo + (2612 — 2y;)] =0

=1

Divide by 2 at both sides, we have:

n

Z(ﬁo + biwi —yi) =0 = Z(% — fo — Piz;) =0

i=1
Note that by definition, ¢; = y; — By — f1x;. Therefore, we have:

n n

Z(Z/i — Bo — Prri) = Zﬁi =0 (1)

i=1 =1
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Similarly, re-write SEj;,e with respect to i, i.e. using [ as the variable:

n

SEiine = Z[l’?ﬁ% + (280m; — 2x3y:) B1 + (Y7 — 2yiBo + B3)]

i=1
N let P22 _ 0 e b
ow, we le =0, we have:
06
aSEline -
95, Z@x?ﬁl + 2Boxi — 2z::) = 0

i=1
Divide by 2 at both sides, we have:

n

Z(x?ﬁl + Bozi — wiyi) = 0 = Z(% — fo—zif1)r; =0
=1

i=1
Again, note that €; = y; — 5y — [1x; by definition. Therefore, we have:

n

Z(yi — Bo — wifr)zi = Z zi€; =0 (2)
i=1

=1

Equations (1) and (2) are very important properties in OLS. They are the con-
straints that used up two degree of freedoms.

2 SST = SSR + SSE

During the lecture, we demonstrated that for each observation, the
of y; from its mean ¢ consists of two parts: unexplained deviation due to error
and deviation explained by the regression line. That is:

~

= (yi — 9:) + (Wi — 9)
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Once we collect the deviation for all observations and sum them up, we have:

n

SSE =) ~(yi — i)’
i=1

n

SSR = (4 —9)°

i=1

We want to prove that = SSE + SSR.

Proof. We start with:

Il
I
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<
S~—
_|_
—
QS>
|
<
=
o

:Zyz 2 +22 )

= SSE + SSR + 2 Z(yi — 9:) (% — 1)

i=1
Now we only need to prove that Y. (y; — 9:;)(9; —y) = 0. Expand the terms, we

have:

n n

> i) @i — 1) =D _ (i — Bo— Bri) (Bo + i — 1)

i=1 =1

_ Z[(yi — Bo — Brx:)(Bo — 7) + (yi — Po — Brs) Brai]

- Z(yl — Bo — Brxi)(Bo — Z — Bo — Bixi) i
i=1

n n

= (Bo— ) _ (Wi — Bo — Bua) + B _(yi — Bo — i)

i=1 i=1

Note that under the assumptions of OLS, both red terms are 0 according to equa-
tions (1) and (2). O
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