Distributions of OLS Coefficients

B10210 Biostatistics
Extra Reading Material for Lecture 39
Xi Chen

School of Life Sciences

Southern University of Science and Technology

Fall 2024



Fall, 2024 Lecture 39

During the lecture, we said that we use ordinary least squares (OLS) in simple
linear regression not only because it is easy to understand and apply, but also
because the resulting coefficients have nice distributions. Furthermore, the OLS
estimators for the coefficients are unbiased, which means that on average, they

accurately estimate the true values of the population parameters.

Under the assumptions of OLS, the slope, the intercept and the predicted
value all follow normal distributions. Now let’s just have a look at their means

and variances.

Before we proceed, let’s clarify our notations. In our population, we are inter-
ested in two joint random variable (X, Y'). We think there is a linear relationship

between them and would like to investigate the relationship. That is, the relation-
ship between Y| X and X. The model is:

YIX=05+/AaX+e€

For each specific data point, we focused on the value of Y whenever X takes a
value x. Due to this reason, we treat X as the known in simple linear regression,
because we can only look at Y whenever X takes a specific value. Therefore, we
tend to write z in the lower case.

€ is the error, which is a random variable and € ~ A (0, 02) under the assump-
tions of OLS, where o2 is called the common variance of the error. We would
like to stick to our convention to use upper-case letters for random variables, but
the upper-case of € is basically E, which will cause confusing. Therefore, we will
use the bold symbol € to represent the random variable and the regular symbol e
the value.

Similarly, our population parameters include the population slope ; and the
population intercept (y. We will use the bold symbols 51 and ,30 to represent
their estimators, respectively, and the regular symbols Bl and ﬁo their estimates,
respectively.

When we have a sample with size n, we have (x;,y;) pairs. In OLS, we used

the following formula to estimate the population parameters:

Y- D)
=5 oy

Each time we have a different samples, those values will change. Therefore, both

andﬁozgj—gl-:i

the slope and intercept are random variables. We could write them in the estimator
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format: _
Yici(@i )Y -Y)
Z?:l(xi —I)?

For each specific data points:

B = and Bp =Y — 31 -7

yi=Po+ iz +e=0+¢
The sample regression line is (note that we re-write § to fi,,):
Ijl’y|:r = IBO + /81:3

Here, it is time to summarise the distributions of all those random variables. They
have nice distributions. That is, they are all normally distributed:

Summary

e ~ N(0, o?)

o2
o~ N (51’ ED —a‘rP)

1 z2
fo~ N (50’ a {E e —WD

R . 1 (z —7)?
Ky|z ~ N (Nylmv 02 : {E + Z:’L:l(xi — @2})

The distribution of the error is our assumption. Let’s see if we can make sense
the rest three.

1 E[8:] =6

The OLS estimator for the slope is:

s Y)Y, -Y)
b= P

Page 3 of 12



Fall, 2024 Lecture 39

Proof. To simplify notation, we denote
i=1
which is just a number. Therefore, we have:

o -p Bl g

n

=1

n

d (@i-1)Y,-Y Z(x - a:)]

i=1

- _—F
SLEI

Since > | (z; — ) = 0, we have:

n

E [51] = SLE Z(% — CE)Yz] = SLE Z(% —7)(Bo + Pz + €)

xrxr _1/_1 Txr i=1
1 [ n
= S—mE ; (Bowi + b1} + wi€; — BoT — PraT — féz)]

= SLE BOZxﬁ—ﬁlef +Zl’i€i —BQZf —B@in —EZEZ']
L =1 =1 i=1 =1 i=1 i=1

Note that > 1  x; = nZ. In addition, €; are the random variables and everything
else are just constants, so the above equation becomes:

~ 1 [ n n n
E |:/31} = S—E Boni’ + 51 Z ZL‘? + Z Ti;€; — ﬂonf — ﬂﬂ’b[fg —x Z Ei]
i=1 i=1 i=1

= SLE 51 (iw? — m:) +ia¢iei — xiell
L i=1 i=1 i=1

bGh <i xf — nf) + E T y e,”
i=1 i=1

Under the assumptions of OLS, the magenta terms are both 0, so we have:

n

E Ti€;

i=1

—E

1
SJJ$

) >i1 T3 — NI

S(E.’L’
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Since the numerator and the denominator in the fraction is the same!, we have:

E[6:] =

A 2
2 Var (ﬁl) TS (@)

Just like how we derived the expectation of ,31, you just need to be patient. There
are more than one way of achieving this goal.

Proof. Method 1: derivation by definition. This is a hard way. Start with
the second equality of equation (1), we have:

v () = (5 - 5[] -=

E '(2?1@» -~ )Y, —ﬁl-sm>2]

S.Z'Z'
@y - B - ) - 7))
- ©)
SIQ?
Now let’s do some algebraic manipulations of the numerator of the above equation:
Z(Iz — J_Z)Yz — Zﬁl(% — J_I)(JJZ — :f) = Z(:pz — j)[YZ — 61(1’1 _ J—;)]
=1 i=1 i=1
= Z(Il —I)[Bo + Biri + € — Pi(x; — T)]
i=1
- Z($Z o E)<60 + 513_7 + ei) = Z(ﬁol’z + Blixi + r€; — 503_: — ﬂli2 — j‘ei)
=1 i=1

:502%‘1'5@2%4—2%61'—Zﬁof—z:ﬂlfQ—fzei (3)
i=1 i=1 i=1 i=1 i=1 i=1

nlsm =Y (ri— 1) = Z:l:1(5€? —20,@ + %) = Y0 af — 22 @ + >, &, replace
i, x; with nZ, we have S,, = Y | 27 — nz?
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Note again ) ., z; = nZ. Therefore, equation (3) becomes:
(i —2)Y; =) Bz —1)(z—z)
i=1 i=1
= Boni’ + ﬁlnEQ + Z Ti€; — nﬁof — nﬁ@Q — T Z €;
' i=1
ST 2w W
=1

Now put equation (4) back to equation (2), we have:

S ez -] 1 L -\
53 ]‘sT ¢ (Zei(”“‘@) &)

Look at the expectation term, and expand the polynomial using the multinomial

Var (Bl) _E

theorem, we have:
E (Z €i(x; — :E)) =E Z €(r;—7)* +2 Z €i(r; — T)ej(x; — :E)]
i=1 i=1 i
=E Ze > el — 2)ey(; —97?)]

i#j
(6)

Under OLS assumptions, the errors are independent, so Ele; - €;] = E[€;] - E [¢}]

+2E

= 0, the second term of equation (6) becomes 0 like this:

2E Zei(xi—x) '—x]—ZZE €i(r; — 2)ej(x; — )
i#j ]
=2 (zi—2)(x; —2)E[e; - €] =0 (7)

i#]
Similarly, the first term of equation (6) becomes:

E | el @2] =D _E[ef(wi—2)] =} (v —2)E [e]]

=1

Note the errors have a common variance: Var (€;) = Var (e3) = --- = Var(g,) =
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2

2, we have:

g

n

E

€ (x; — $)2] = Z(fi —7)°E [e]] = Z(fﬁz‘ —z)’0

=02 S, (8)

=1

Put equations (7) and (8) back to equation (6), we have:
n 2
i=1

Put the above term back to equation (5), we have:

R 1 2
Var(,@1>:—-a§-Sm: Ie _ - O

2
S:m:

O

That really involves in a lot of algebraic manipulation. Actually, there is a

much simpler way.

Proof. Method 2: using the fact that Y, are independent. We still should

start with similar manipulations from equation (1):

5 > i (i —2) (Y — }7) Yoy —2)Y; — Y > iy (i — @)

B1 = S = S
_ E:’L:l(xi - 7)Y
SICL‘
= Var <,(§1) = Var (Zl:l(? _ x>YZ)

T — T T9 — T Ty, — T
-V Y Y 'Y,
ar( S.. T, Tl )

Since Y'; are independent of each other, the variance of the sum is the sum of the

variances. Then we have:

Var (ﬁl) = Var (9018— < 'Yl) + Var <x28_ * 'YQ) + -+ Var (!Ens— T Yn)

($2 - Si’)Q (xn - :Z')2
TV8JY(Y2)++87

2
TT TT

— M Var (V) +

= Var(Y,) (9)
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Note that each Y; has the same variance:
Var (Y;) = Var (B + f1z; + €;) = Var (¢;) = o2

Putting equation (10) back to equation (9), we have:

_ 7)2 —7)2 —7)?
Var<181>:%%.024_(‘%28#.0—2_{_..._1_%#.02
St o
Sz?.’l? ¢ Sxa;
0,2

3 E [Bo} = So

Since we already figured out E [31} = [31. the expectation of the intercept B¢ can
be easily proved by using the fact that the sample regression line always passes

through the point (,%) under OLS, that is, § = B + 51z

Proof. We start with the way how we get Bg:
E [BO] ) [Y . ﬁlg:«] ~E[Y]-F [w}}
o REIOEE

:%ZE[Yi]—f‘Bl
=1

=E

ZYi] —I-p
i=1

Note that:

EY;| =E[B + bizi + €] = o + S + Ele] = o + S

(11)

(12)
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Put equation (12) back to equation (11), we have:

B[] = 23 (50 + o) — 7

i=1
= % (Zﬁo+ﬁlz$i) T3
i=1 i=1

:%(”50+51'n$)—$'51
= 5o

4 Var(,é0>zag- —+ ==

Here, we could use a similar strategy, starting with the fact that the point (z, %)
must be in the sample regression line, so Y = Bo + ,3137;

Proof.
Var ([30> = Var (Y — ,@J:) = Var (Y - [—E][%)
You see here, we already computed Var (ﬁ1> previously, and Var (Y) is straight-

forward to calculate. If we know that Y and (—7) [;1 are independent, then we are
done. However, proving they are independent is slightly more complicated, which

we will come back in a later time.

For now, we re-write 3; similar to the previous section:

Z?:l(:;i - j:)YZ> — Var (Sxm Y - T ES:?ZI(% - f)Yz>

Var (ﬁ0> = Var (Y — -

1 e _
= STVar (Sm Y -7 Z(xl — a:)Yl) (13)
xx =1

xrx
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Taking the term inside the parentheses of equation (13) out to simply:
B n 1 n n

n

i=1 i=1

=1
T — — SCL’I — —
O S AR

= {%—x(ml—x)} Y+ F {%—x(wl—x)} 'Y,

Putting back to equation (13) and noting that all Y; are independent and have a
common variance o2, we have:

Var (ﬁ},) = STVar ({% — Z(x; —5)] Y+ + [% — &(1 —z)] -Yn)

n
1 [ Sxﬂ? S.Z’Z' — —
= s _Var ([— —z(x; — x)} . Yl) -+ Var <{7 — Z(z, — m)} . Yn)}
1 (TS Ser ]
= 5 [ T(r1 — T) } Var (Y ct [7 — T(x, — x)} Var (Yn)>
2 2
:SG; . {S xl—x} {——x(mn—x)} )
0—3 | Sww S 2
“5 |2 g Z —m—i—x;( )]
2 Q2
_ SO-; S:m: Ezszx]

5 E[f,.] =y

Now that we have derived the expectation of the slope [‘;1 and the intercept ﬁo,
it is very easy for us to figure out the expectation of the predicted value fi,,.
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Proof. We start with the definition: f,, = Bo + Blzv, so we have:

E[@,.] =E o+ buz| =E[Bo] +4E [6:] = o+ frz = iy

6 Var(ﬂmz):(fg- —+ =5

We are in a similar situation, if we know that BO and Bl are independent, then
we would get:

Var (ﬂy‘x) = Var (,30 + le> = Var (,ég) + z?Var (,31>

Since we already computed Var <ﬁ0> and Var <[§1> previously, we are done now.

We might come back to the proof that BO and Bl are independent, but for now
let’s start from scratch. The procedures look very similar to previous ones.

Proof. First, we start with the following expressions what we encountered repeated

in the previous sections:

Z?:I(xi —7)Y;
SJXU

Bo=Y — 17 and B =
Now, we start with the definition of f1,,:

Var ([me) = Var <BO + ,élx> = Var <Y - ,élff + ﬁ1x>
= Var <Y+Bl-[:c—§;])
= Var (Y + Z?l(xsz — )Y, Nz — x))

= Var (Sm Y+ (¢ - ? Zz‘:1(Iz’ — f)Yz)

1 _ o _
= S—%Var <Sm Y + (z—72) Z(% - x)Yz> (14)

i=1

Expand the terms inside the variance parentheses using the same tricks as before,
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and let d =z — Z:

Sea - Y Z =S Y + Zd — 7)Y,
=1

S,
:7; +Zd

=1
Sx:v _ S:cx _

Szx = Swz 7
= [T—Fd(xl—f)} Y+ + {7+d(xn—x)} Y,

Put the above expression to equation (14). Note that all Y; are independent and

2

have a common variance o7, we have:

Var (f,,) LVar ({% +d(z; — :13)] Y+ + {% + d(z, — :1:)] : Yn)

S%,
1 I Sxm _ 2 Sx:p - ?
S—%x . 7 -+ d(xl — l‘) Var (Yl) + - 7 + d(xn - I’) Var (Yn)

o2 /(S ? S ?
= - (ﬂﬂl(m—x)) +---+(ﬂ+d(:pn—x)> (15)
T n n
Taking the sum inside the square brackets out to simplify:

(%%—d(wl—x))z%----%— (%+d(mn—aﬁ))2

n
n

SQ
_ ﬁﬂtz dz — T +d2;( i — 1)
2

S

— Dew 2.9 (16)
n

Put equation (16) back to equation (15), we have:

2

q2 2 2. 52
ar(i) = B (S s, - B

2
52, n

2.{1+ (-0 1
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