Lecture 10 Random Variables, PMF, Expectation & Variance

BIO210 Biostatistics

Xi Chen Fall. 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF LIFE SCIENCES

What is a random variable (r.v.) ?

- An assignment of a value (a real number) to every possible outcome in the sample space.
- Mathematically: A real-valued function defined on a sample space Ω. In a particular experiment, a random variable (r.v.) would be some function that assigns a real number to each possible outcome.

More about random variables

- Discrete or continuous.
- Can have several random variables defined on the same sample space.
- Notation
 - random variable X : function $\Omega \mapsto \mathbb{R}$
 - numerical value: x : value $\in \mathbb{R}$

Different random variables on the same sample space

Function of a random variable is an r.v.

Probability Mass Function (PMF)

Probability Mass Function (PMF)

The PMF of X = number of tails after three flips

x	$\mathbb{P}\left(\{\boldsymbol{X}=\boldsymbol{x}\}\right)$		1	
0	1/8		$\frac{1}{8}$,	x = 0, 3
1	3/8	$\mathbb{P}\left(\{\boldsymbol{X}=x\}\right) = \boldsymbol{\zeta}$	3	
2	3/8		$\overline{8}$,	x = 1, 2
3	1/8		0	a tha see that
otherwise	0		(0,	otherwise

PMF Notation

Probability Mass Function

• Notation

$$\begin{split} \mathbb{P}_{\boldsymbol{X}}(x) &= \mathbb{P}\left(\{\boldsymbol{X} = x\}\right) \\ &= \mathbb{P}\left(\{\omega \in \Omega \mid \boldsymbol{X}(\omega) = x\}\right) \end{split}$$

• Properties

$$\mathbb{P}_{\boldsymbol{X}}(x) \ge 0$$
$$\sum_{x} \mathbb{P}_{\boldsymbol{X}}(x) = 1$$

ω	$\boldsymbol{X}(\omega) = x$	$\mathbb{P}_{\boldsymbol{X}}(x) = \mathbb{P}\left(\{\boldsymbol{X} = x\}\right)$
ННН	0	$\frac{1}{8}$
ТНН, НТН, ННТ	1	$\frac{3}{8}$
ТТН, ТНТ, ТНН	2	$\frac{3}{8}$
ТТТ	3	$\frac{1}{8}$

Geometric PMF

Experiment: keep flipping a coin ($\mathbb{P}(H) = p$) until a head comes up for the first time. Let the random variable X be the number of flips.

ω	$oldsymbol{X}(\omega)$	$\mathbb{P}_{\boldsymbol{X}}(x)$
Н	1	p
TH	2	(1-p)p
TTH	3	$(1-p)^2 p$
:	:	÷
$\underbrace{TTTTTT}_{n-1}H$	n	$(1-p)^{n-1}p$

Geometric PMF. X: geometric random variable.

To compute a PMF $\mathbb{P}_{\mathbf{X}}(x)$:

- 1. Collect all possible outcomes for which X = x;
- 2. add their probabilities;
- 3. repeat for all x.

Compute PMF

Experiment: two independent rolls of a fair tetrahedral die.

 $m{F}$: outcome of the first roll $m{S}$: outcome of the second roll $m{X}=min(m{F},m{S})$

 $\mathbb{P}_{\boldsymbol{X}}(x) = ?$

Experiment: archery

Let X be the score you get for each shot. What is the expected value of X ?

x	$\mathbb{P}_{\boldsymbol{X}}(x)$
1	0.19
2	0.17
3	0.15
4	0.13
5	0.11
6	0.09
7	0.07
8	0.05
9	0.03
10	0.01

Think: What is the average score you will get after a large number of trials?

Expected value (Expectation)

Definition

$$\mathbb{E}\left[\boldsymbol{X}\right] = \sum_{x} x \mathbb{P}_{\boldsymbol{X}}(x)$$

- Interpretation
 - 1. Centre of gravity of the PMF
 - 2. Average in large number of repetitions of the experiment

PMF of X from the archery experiment $\mathbb{P}_{\mathbf{X}}(x)_{\mathbf{x}}$ 0.20 0.18 0.16 0.14 0.12 0.100.08 0.06 0.04 0.02 0 'n 1 2 3 4 5 6 7 8 9 10 12/17

Example: a uniform discrete random variable \boldsymbol{X} on 0, 1, 2, 3, ..., n

What is $\mathbb{E}\left[X
ight]$?

Let X be a random variable, and let Y = g(X), what is $\mathbb{E}[Y]$?

14/17

- Caution: in general $\mathbb{E}\left[g(\mathbf{X})\right] \neq g(\mathbb{E}\left[\mathbf{X}\right])$
- Exception: if α, β are constants, then we have:

-
$$\mathbb{E}[\alpha] = \alpha$$

-
$$\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X]$$

- $\mathbb{E}\left[\alpha \mathbf{X} + \beta\right] = \alpha \mathbb{E}\left[\mathbf{X}\right] + \beta$

Variance and standard deviation of a random variable

Definition of Variance

$$\operatorname{Var}(\boldsymbol{X}) = \mathbb{E}\left[(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])^2 \right]$$

Properties of Variance

-
$$\operatorname{Var}(\mathbf{X}) = \mathbb{E}\left[\mathbf{X}^2\right] - (\mathbb{E}\left[\mathbf{X}\right])^2$$

- If α, β are constants, then $\mathbb{V}ar(\alpha X + \beta) = \alpha^2 \mathbb{V}ar(X)$

Definition of Standard Deviation

$$\sigma_{\boldsymbol{X}} = \sqrt{\mathbb{V}\mathrm{ar}\left(\boldsymbol{X}\right)}$$

Discrete Random Variables (Summary slide)

