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Random Variable

What is a random variable (r.v.) ?
e An assignment of a value (a real number) to every possible outcome in the sample
space.

e Mathematically: A real-valued function defined on a sample space €). In a
particular experiment, a random variable (r.v.) would be some function that
assigns a real number to each possible outcome.
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Random Variable

More about random variables

e Discrete or continuous.

e Can have several random variables defined on the same sample space.
e Notation

- random variable X : function Q — R
- numerical value: = : value € R
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Different random variables on the same sample space

X : number of tails Y : number of heads

W
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Function of a random variable is an r.v.

X : height in m

Y =100- X

Sample space §)

~

1.65 1.75 1.85 1.95 x
165 175 185 195 Y
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Probability Mass Function (PMF)
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Probability Mass Function (PMF)

The PMF of X = number of tails after three flips
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PMF Notation

w | Xw) =z | Px()=P{X =2})
1
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Geometric PMF

Experiment: keep flipping a coin (P (H) = p) until a head comes up for the first time.
Let the random variable X be the number of flips.

w | Xw | Px(
H 1 P
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TTH 3 (1—-p)3p
TTT...;I'TT H n (1=p)1p

Geometric PMF. X: geometric random variable.
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How to compute a PMF P 4 (z)

To compute a PMF P x(x):

1. Collect all possible outcomes for which X = z;
2. add their probabilities;

3. repeat for all z.
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Compute PMF

Experiment: two independent rolls of a fair tetrahedral die.

4
I

F': outcome of the first roll o 3
S outcome of the second roll §

X =min(F,S) L2
n

1 2 3 4
F : first roll
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Expected value of a random variable (Expectation)

Experiment: archery
Let X be the score you get for each shot. What is the
expected value of X 7
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Think: What is the average score you will get after a large
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Expected value (Expectation)

Definition

E[X] = lepx(a:)

e Interpretation

1. Centre of gravity of the PMF
2. Average in large number of
repetitions of the experiment

PMF o
P x ()4
0.20 A
0.18 A
0.16 A
0.14 1
0.12 A
0.10 A
0.08 -
0.06 -
0.04 -
0.02 4

f X from the archery experiment

N
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Expectation of a Uniform Distribution

Example: a uniform discrete random variable X on 0,1,2,3,...,n

P x ()
1 -I ® @ [ ] @ ® ®
n—+1
T T T >$
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Properties of expectations

Let X be a random variable, and let Y = ¢(X), what is E[Y']?

e The hard way: e The easy way: Y ‘ Py (y)
=Y wpyly) EN]=Y g@px() 01 3/8
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Expectation of a linear function of r.v.

e Caution: in general E [¢(X)] # g(E [X])

e Exception: if «, 3 are constants, then we have:
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Variance and standard deviation of a random variable

Var (X) = E [(X — E[X])?]

Var (X) = E [X?] — (E[X])?
If o, B are constants, then Var (X + 3) = a?Var (X)

ox =4/ Var (X)
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Discrete Random Variables (Summary slide)

Sample Space Q2 Random variable X PMF P x ()
| X@)=n am p=P{X=u})
W] e— IpX(xl) =D
X(wo) =2
Wy @ ( 2) ’ €2 P2 = P({X = 532})
P x (22) = p2
w3 e——_| X(w3) = I3
T — = p3 =P ({X = z3})
x\Z3) =Dp3
w4 0\%
w5 e Ty pys=P ({X = 374})
X(U)E)) = T4 ~ ]pX(m4> = P4
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