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Random Variable

What is a random variable (r.v.) ?

• An assignment of a value (a real number) to every possible outcome in the sample

space.

• Mathematically: A real-valued function defined on a sample space Ω. In a

particular experiment, a random variable (r.v.) would be some function that

assigns a real number to each possible outcome.
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Random Variable

More about random variables

• Discrete or continuous.

• Can have several random variables defined on the same sample space.

• Notation

- random variable X : function Ω 󰀁→ R
- numerical value: x : value ∈ R
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Different random variables on the same sample space

X : number of tails Y : number of heads
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Function of a random variable is an r.v.

Sample space Ω

X : height in m

1.65 1.75 1.85 1.95 x

Y = 100 ·X

165 175 185 195 y
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Probability Mass Function (PMF)

X = # of tails
-1 0 1 2 3 4 x
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Probability Mass Function (PMF)

The PMF of X = number of tails after three flips

x P ({X = x})
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PMF Notation

Probability Mass Function

• Notation

X(x) = P ({X = x})
= P ({ω ∈ Ω | X(ω) = x})

• Properties

X(x) 󰃍 0
󰁛

x
X(x) = 1

ω X(ω) = x X(x) = P ({X = x})
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Geometric PMF

Experiment: keep flipping a coin (P (H) = p) until a head comes up for the first time.

Let the random variable X be the number of flips.

ω X(ω) X(x)

H 1 p

TH 2 (1− p)p

TTH 3 (1− p)2p
...

...
...

TTT...TTT󰁿 󰁾󰁽 󰂀
n−1

H
n (1− p)n−1p

Geometric PMF. X: geometric random variable.
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How to compute a PMF X(x)

To compute a PMF X(x):

1. Collect all possible outcomes for which X = x;

2. add their probabilities;

3. repeat for all x.
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Compute PMF

Experiment: two independent rolls of a fair tetrahedral die.

F : outcome of the first roll

S: outcome of the second roll

X = min(F ,S)

X(x) = ? 1
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Expected value of a random variable (Expectation)

Experiment: archery

Let X be the score you get for each shot. What is the

expected value of X ?

10 9 8 7 6 5 4 3 2 1

Think: What is the average score you will get after a large
number of trials?

x X(x)

1 0.19

2 0.17

3 0.15

4 0.13

5 0.11

6 0.09

7 0.07

8 0.05

9 0.03

10 0.01
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Expected value (Expectation)

Definition

E [X] =
󰁛

x

x X(x)

• Interpretation

1. Centre of gravity of the PMF

2. Average in large number of

repetitions of the experiment

PMF of X from the archery experiment
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Expectation of a Uniform Distribution

Example: a uniform discrete random variable X on 0, 1, 2, 3, ..., n
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0 1 2 3 4 · · · · · · · · · n− 1 n
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Properties of expectations

Let X be a random variable, and let Y = g(X), what is E [Y ]?

• The hard way:

E [Y ] =
󰁛

y

y Y (y)

• The easy way:

E [Y ] =
󰁛

x

g(x) X(x)
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y

−1 0 1 2 3 4

y Y (y)

0 3/8

1 4/8

4 1/8

x g(x) X(x)

0 1 1/8

1 0 3/8

2 1 3/8

3 4 1/8
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Expectation of a linear function of r.v.

• Caution: in general E [g(X)] ∕= g(E [X])

• Exception: if α,β are constants, then we have:

- E [α] = α

- E [αX] = αE [X]

- E [αX + β] = αE [X] + β
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Variance and standard deviation of a random variable

Definition of Variance

Var (X) = E
󰀅
(X − E [X])2

󰀆

Properties of Variance

- Var (X) = E
󰀅
X2

󰀆
− (E [X])2

- If α,β are constants, then Var (αX + β) = α2Var (X)

Definition of Standard Deviation

σX =
󰁳

Var (X)
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Discrete Random Variables (Summary slide)

Sample Space Ω

ω1

ω2

ω3

ω4

ω5

x

x1

x2

x3

x4

Random variable X

X(ω1) = x1

X(ω2) = x2

X(ω3) = x3

X(ω4) = x4

X(ω5) = x4

PMF X(x)

X(x1) = p1

X(x2) = p2

X(x3) = p3

X(x4) = p4

p1 = P ({X = x1})

p2 = P ({X = x2})

p3 = P ({X = x3})

p4 = P ({X = x4})
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