Lecture 13 Normal (Gaussian) Distribution

BIO210 Biostatistics

Xi Chen

Fall, 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF LIFE SCIENCES

The Normal (Gaussian) PDF

The PDF of a normal distribution

$$\mathbf{ff}_{\mathbf{X}}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad \mathbb{E}\left[\mathbf{X}\right] = \mu, \ \mathbb{V}\mathrm{ar}\left(\mathbf{X}\right) = \sigma^2$$

The Standard Normal (Gaussian) PDF

We have the random variable $X \sim \mathcal{N}(\mu, \sigma^2)$. Now consider the following random variable:

 $oldsymbol{Y} = aoldsymbol{X} + b$, where a and b are constant

- What distribution does Y follow?
- $\mathbb{E}[Y] = ?$
- $\operatorname{Var}(\mathbf{Y}) = ?$

 $\boldsymbol{Y} \sim \mathcal{N}(a\mu + b, a^2 \sigma^2)$

Property: A linear function of a normal r.v. is also a normal r.v.

We have the random variable ${\bm X}\sim \mathcal{N}(\mu,\sigma^2).$ Now consider the following random variable:

$$\boldsymbol{Z} = \frac{\boldsymbol{X} - \mu}{\sigma}$$

 $\boldsymbol{Z} \sim \mathcal{N}(0,1)$

- What distribution does $oldsymbol{Z}$ follow?
- $\mathbb{E}[Z] = ?$
- $\operatorname{Var}(Z) = ?$

Given that X and Y are two independent normal random variables, and $X \sim \mathcal{N}(\mu_x, \sigma_x^2)$ and $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$, now consider the new random variable:

W = X + Y

- What distribution does $oldsymbol{W}$ follow?
- $\mathbb{E}[W] = ?$
- $\operatorname{Var}(W) = ?$

 $\boldsymbol{W} \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

Property: the sum of independent normal random variables is still normal.

Properties of normal PDFs

The Empirical Rule

Normal Distribution in real life

henomena:	Girth	Frequency
uromonte of	33	3
urements of	34	18
	35	81
	36	185
/alue.	37	420
	38	749
	39	1,073
	40	1,079
	41	934
	42	658
	43	370
	44	92
	45	50
	46	21
	47	4
	48	1

- **Commonly observed in many natural phenomena**: height, weight, blood pressure, chest measurements of Scottish soldiers, *etc*.
 - In many cases, you need to take the log value.

• Noise or Error.

- An assumption.
- Sum of many random variables.
 - Only if they have equal weights.

• Sample mean.

TABLE 1: Chest measurement of Scottish soldiers

Probability Calculation

$$\boldsymbol{X} \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mathbb{P}\left(a \leqslant \mathbf{X} \leqslant b\right) = \int_{a}^{b} \mathbf{f}_{\mathbf{X}}(x) \,\mathrm{d}x$$
$$= \int_{a}^{b} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{-(x-\mu)^{2}}{2\sigma^{2}}} \,\mathrm{d}x$$

The solution is non-elementary!

Note: we know
$$\mathbb{P}(a \leq \mathbf{X} \leq b) = \mathbb{F}_{\mathbf{X}}(b) - \mathbb{F}_{\mathbf{X}}(a)$$

and if $\mathbf{X} \sim \mathcal{N}(\mu, \sigma^2)$, then $\frac{\mathbf{X} - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.

Pre-computed table to the rescue!

Examples of the Standard Normal Table

TABLE A.3 Areas in the upper tail of the standard normal distribution											
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.05	
0.0	0.500	0.496	0.492	0.488	0.484	0.480	0.476	0.472	0.468	0,46	
0.1	0.460	0.456	0.452	0.448	0,444	0.440	0.436	0.433	0.429	0.42:	
0.2	0.421	0.417	0.413	0.409	0.405	0.401	0.397	0.394	0.390	0.38	
0.3	0.382	0.378	0.374	0.371	0.367	0.363	0.359	0.356	0.352	0.34	
0.4	0.345	0.341	0.337	0.334	0.330	0.326	0.323	0.319	0.316	0,313	
0.5	0.309	0.305	0.302	0.298	0.295	0.291	0.288	0.284	0.281	0.27	
0.6	0.274	0.271	0.268	0.264	0.261	0.258	0.255	0.251	0.248	0.24	
0.7	0.242	0.239	0.236	0.233	0.230	0.227	0.224	0.221	0.218	0.21	
0,8	0.212	0.209	0.206	0.203	0.200	0.198	0.195	0.192	0.189	0.18	
0.9	0.184	0.181	0.179	0.176	0.174	0.171	0.169	0.166	0.164	0.16	
1.0	0.159	0.156	0.154	0.152	0.149	0.147	0.145	0.142	0.140	0.13	
1.1	0.136	0.133	0.131	0.129	0.127	0.125	0.123	0.121	0.119	0.11	
1.2	0.115	0.113	0.111	0.109	0.107	0.106	0.104	0.102	0.100	0.09	
1.3	0.097	0.095	0.093	0.092	0.090	0.089	0.087	0.085	0.084	0.083	
1.4	0.081	0.079	0.078	0.076	0.075	0.074	0.072	0.071	0.069	0.06	
1.5	0.067	0.066	0.064	0.063	0.062	0.061	0.059	0.058	0.057	0.05	
1.6	0.055	0.054	0.053	0.052	0.051	0.049	0.048	0.047	0.046	0.044	
1.7	0.045	0.044	0.043	0.042	0.041	0.040	0.039	0.038	0.038	0.03	
1.8	0.036	0.035	0.034	0.034	0.033	0.032	0.031	0.031	0.030	0.029	
1.9	0.029	0.028	0.027	0.027	0.026	0.026	0.025	0.024	0.024	0.02	
2.0	0.023	0.022	0.022	0.021	0.021	0.020	0.020	0.019	0.019	0,018	
2.1	0.018	0.017	0.017	0.017	0.016	0.016	0.015	0.015	0.015	0.014	
2.2	0.014	0.014	0.013	0.013	0.013	0.012	0.012	0.012	0.011	0.011	
2.3	0.011	0.010	0.010	0.010	0.010	0.009	0.009	0.009	0.009	0.008	
2.4	0.008	0.008	0.008	0.008	0.007	0.007	0.007	0.007	0.007	0.000	
2.5	0.006	0.006	0.006	0.006	0.006	0.005	0.005	0.005	0.005	0.005	
2.6	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	
2.7	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	
2.8	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	
2.9	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.001	0.001	
3.0	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
3.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
3.2	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
3.3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
3.4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

TABLE A 2 Cumulative normal distribution (continued) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.05 5000 .5319 .5350 0.0 5040 5080 5120 \$160 5199 0.1 .5398 .5438 .5478 .5517 .5557 .5596 \$636 .5675 .5714 \$753 .5793 .6103 .6141 0.2 .5832 .5871 .5910 .5948 .5987 .6026 .6064 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 6512 0.4 .6554 6591 .6628 .6664 .6700 .6736 .6772 .6808 6844 6879 0.5 .6915 .6950 6985 7054 7088 .7123 .7157 .7190 7224 0.6 .7257 7291 7324 .7357 7180 7422 7454 7486 7517 7549 0.7 7580 2671 .7704 .7734 7852 7611 7642 7764 .7794 7823 0.8 7881 .7910 7939 .7967 7005 9023 8051 8078 8105 \$133 0.9 .8159 8186 8212 8264 8289 8315 \$340 \$161 8389 1.0 .8413 8438 8461 .8485 9509 9531 8554 8477 8400 8621 8708 8729 8770 8790 .8810 .8810 8643 8665 8686 8749 9015 1.2 .8849 .8869 .8888 .8907 .8925 9044 9062 8080 \$907 1.3 9032 .0040 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 0102 9207 0236 .9251 9265 .9279 .9297 .9305 .9319 1.4 9222 0132 1.5 .0345 .9357 1.6 .0452 9463 9474 0484 .9495 .9505 .9515 .9525 9535 9545 1.7 .9554 0564 0573 0592 0501 0.000 9608 9516 9625 9633 9664 9678 1.8 9541 9649 0656 9671 9686 .0601 0600 1.9 .9713 .9719 .9726 .9732 .9738 0744 9750 .9756 9761 9767 9772 0812 0817 2.0 2.1 .9821 .9826 9830 0214 0919 0842 08.44 9850 0854 9857 0261 9864 9871 9875 9878 9881 9884 9887 9890 2.2 9868 .0803 .9901 00/14 0006 0000 .9911 .9913 0016 2.8 .9896 9898 2.4 .9918 9920 0022 0024 0027 9929 003 003 0034 2.5 0028 0040 0041 0045 00.44 0051 0051 2.6 .9955 9956 9957 0050 9960 .0061 9967 0063 9964 2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 0075 0075 0074 2.0 9974 0075 0076 0077 0077 0078 0070 9979 9980 .9081 9984 2.9 .9982 9982 F800. 9984 9985 2.0 0081 008 0000 0002 0002 3.1 0001 9991 0001 3.2 9993 0003 0004 0004 0004 0004 0004 0004 0005 0005 3.3 0005 9997 .0005 0005 .0006 0006 .9996 9996 .9996 3.4 .0007 .9997 0007 .9997 0007 0007 0007 000* 0007 0009 3.5 0006 8000 0006

10/14

Example: Exam Scores

A Historical Fact About The First Standard Normal Table

$$\int_0^x e^{-t^2} dt = F(x) = x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \frac{x^9}{4!9} - \cdots$$
$$\int_x^\infty e^{-t^2} dt = G(x) = \frac{1}{x} - \frac{1}{2x^3} + \frac{1 \cdot 3}{4x^5} - \frac{1 \cdot 3 \cdot 5}{8x^7} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{16x^9} - \cdots$$

- Large gaps between F(x) and G(x)
- First computed by the French astronomer Christian Kramp in 1799.
- Analyse des Réfractions Astronomiques et Terrestres (Analysis of Astronomical and Terrestrial Refractions)

The Table by Christian Kramp

					1 1	Intégrale.	1 Diff.prem.	1 Diff. 11.	1 Diff. HT.I	1 1	1 Intégrale.	1 Diff. prem.	I DIT. IT.	Diff m	10:00
T	ABLE	PRF	MIÈ	DE	0,76	0,25032654	556981	8511	or	2.47	0.00042311518	2186320	105705	47.04	1000
1.5			THEFT	ILL'.	0,77	0,2447 567 3	548470	8400	0.5	2.48	0,00040125180	2080534	10:071	1533	18
tiara	les de anti	7. 7	20.233		0,78	0,23927203	539980	8465	20	2:49	0,00038014655	1070463	06538	1350	17
regiu	ies ac c	at, at	puis u	ne valeur	0,79	0,23387223	531515	8436	31	2,50	0.00036065102	1882925	02188	4173	17
q	uelconaue di	t insm	h t in	finia	0,80	0,22855708	523079	8405	33	2,51	0.00034182267	1700737	88015	4000	16
	The a	, , Jusqu	u i inj	lunce.	0,81	0,22332629	514674	8372	37	2,52	0,00032301550	1702722	84013	3838	16
1.11	A PROPERTY EC	日日日本	GOTGARIA		0,82	0,21817955	506302	8335	39	2,53	0,00030688808	1618709	80175	3678	15
		104000000	-Leccoste	010	0,83	0,21311003	497967	8296	42	2,54	0,00029070099	1538534	76497	3526	14
t	Integrale.	Diff. pren	a. Diff. II.	Diff. III.	0,04	0,20313030	489071	8254	45	2,55	0,00027531565	1462037	72971	3378	14
0.00	0.88622602	000068		1 100	0,03	0,20324013	481417	8209	46	2,56	0,00026069528	1389066	69593	3236	137
0,01	0.87622724	000767	100	199	0.87	0,19342393	473208	8103	50	2,57	0,00024680462	1319473	66357	3099	1.5
0,02	0.86622057	000367	500	1990	0.88	0.18004345	405040	8115	52	2,00	0,00020000989	1253110	63258	2968	138
0,03	0,85623500	998768	700	100	0,80	0,18447413	448871	8007	04	2.60	0,00022107875	1189858	00290	2830	141
0,04	0,84624822	997969	998	107	0,00	0,17998542	410864	2051	58	2.61	0,00020918013	1129508	57400	2749	139
0,05	0,83526853	996971	1195	100	0,91	0,17557678	432013	7803	61	2,62	0.00018716330	1012307	59141	2070	142
0,06	0,82629882	995776	1394	196	0,92	0,17124765	425020	7832	60	2,63	0 00017608042	065256	40643	0380	1 105
0,07	0,81634106	994382	1590	495	0,93	0,16699745	417188	7770	65	2,64	0.00016733686	015613	47.963	0075	101
0,08	0,80039724	992792	1785	194	0,94	0,16282557	400418	7705	66	2,65	0,00015818073	868350	44088	2174	0
0,09	0,79046932	991007	1979	195	0,95	0,15873139	401713	7639	67	2,66	0,00014040723	823362	42814	2070	0.0
0,10	0,78055925	989028	2174	192	0,96	0,15471426	394074	7572	71	2,67	0,00014126361	780548	40735	1985	88
0.10	0.76680013	900004	2300	190	0,97	0,15077352	386502	7501	70	2,68	0,00013345813	739813	38750	1897	85
0.13	0 *5605555	904400	2550	189	0,95	0,14090800	379001	7431	74	2,69	0,00012606000	701063	36853	1812	83
ONIA	0,70093533	981982	2740	188	0,99	0,14311849	371570	7357	74	2,70	0,00011904937	664210	35041	1729	78
0.15	0.73734436	979107	2933	100	1,00	0,13940279	354213	7283	75	2,71	0,00011240727	629169	33312	1651	76
0,16	0.72758180	073135	33.3	183	1.02	0,130,0000	330930	7208	77	2,72	0,00010011558	595857	31661	1575	71
0,17	0,71785047	060832	3,86	180	1.03	0.12850414	310501	7151	80	2,75	0,00010015701	564196	30086	1504	70
0,18	0,70815215	066346	3666	175	I.O.A	0,12506803	335510	7001	70	2,74	0,00009451505	534110	28582	1434	07
0,19	0,69848869	962680	3841	178	1,05	0,12101283	328567	6800	81	2,75	0,00003917395	000028	27148	1307	04
0,20	0,68886189	958839	4010	173	1,06	0,11862716	321675	6811	83	2,70	0,00003111807	470500	20701	1303	59
0,21	0,67927350	954820	4102	171	1,07	0,11541041	314864	67.08	83	2.78	0.00007480888	402099	24470	1214	56
0,22	0,66972530	950628	4363	168	1,08	0,11226177	308136	6645	85	2.70	0,00007050767	404887	20204	1104	52
0,23	0,66021902	946265	4531	166	-1,09	0,10918041	301401	6560	85	2.80	0.00006647880	389837	20020	1075	5.
0,24	0 6507 5637	941734	4697	163	1,10	0,10616550	294931	6175	86	2.81	0.00006265043	361015	10847	1004	40
0,25	0,04133903	937037	4860	160	1,11	0,10321619	288456	6389	85	2.82	0,00005003128	342068	18823	075	48
0,20	0,03196866	932177	5020	157	1,12	0,10033163	282067	6304	88	2,83	0,00005561060	323245	17848	027	43
0,27	0,02204089	927157	5177	155	1,13	0,09751096	27 57 63	6216	87	2.84	0,00005237815	305397	16021	884	45
0,28	0,01337532	929980	5332	151	1,14	0,0947 5333	269547	6129	89	2,85	0,00004032418	288476	16037	839	39
0.30	0,00415552	916648	5483	149	1,15	0,09205786	263418	60.10	87	2,86	0,00001613942	272439	15198	800	40
0.31	0.58587730	911165	5032	140	1,10	0,00942368	257378	5953	89	2,87	0,00004371503	257241	14398	760	38
0,32	0.57682206	9055533	0777	142	1.18	0.08433565	201425	5804	89	2,88	0.00004114262	242843	13638	722	34
1999		99756	3919	120	1 3340 1	-).a.Tannon 1	×10001 1	2775 1	89	2,89 1	0,00003871419	229205	12916	688	36

13/14

Probability Mass/Density Function (PMF/PDF)

