Lecture 15 Sampling Distribution And The Central Limit Theorem

BIO210 Biostatistics

Xi Chen Fall, 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF **LIFE SCIENCES**

Use Sample Statistics To Estimate Population Parameters

The scenario: we draw a sample of size n from the population. We observe the sample mean is \bar{x} and the sample variance is s^2 . We want to answer the following type of questions:

- If the population mean were μ_0 :
	- what would be the probability of observing a sample of size n with a mean of \bar{x} ?
	- what would be the probability of observing a sample of size n with a mean falling into $[a, b]$?
- If the population variance were σ_0^2 :
	- what would be the probability of observing a sample of size n with a variance of s^2 ?
	- what would be the probability of observing a sample of size n with a variance of $[a, b]$? 1/12

Intuition of Sampling Distribution

Intuition of Sampling Distribution

100 plates (samples)

Intuition of Sampling Distribution

Sampling Distribution of The Sample Mean

Sampling distribution of the sample mean

Gene A expression $\sim \mathcal{D}(\mu, \sigma^2)$ X_1 X_2 X_3 \cdots \cdots \overline{X}_{n-1} \overline{X}_n x_1 x_2 x_3 x_{n-1} x_n $\bar{X} = \frac{1}{\tau}$ \overline{n} $\sum_{n=1}^{\infty}$ $i=1$ \boldsymbol{X}_i \bar{x} 3.0 3.2 3.2 \cdots \cdots 2.2 4.0 3.0 dependent and identically distributed (i.i.d.) random variables. $\boldsymbol{X}_1 \sim \mathcal{D}(\mu, \sigma^2)$ $\boldsymbol{X}_2 \sim \mathcal{D}(\mu, \sigma^2)$ $\boldsymbol{X}_3 \sim \mathcal{D}(\mu, \sigma^2)$. . . $\boldsymbol{X}_{n-1} \sim \mathcal{D}(\mu, \sigma^2)$ $\boldsymbol{X}_n \sim \mathcal{D}(\mu, \sigma^2)$

 $\bar{X} \sim ?(?, ?)$ 6/12

 $X_1, X_2, ..., X_n$ are in-

By Pierre Simon de Laplace in 1810.

Theorem

The sampling distribution of the sample mean of n independent and identically distributed (i.i.d.) random variables is approximately normal, even if original variables themselves are not normally distributed, provided that n is large enough.

$$
\bar{X} \sim \mathcal{N}(\mu_{\bar{X}}, \sigma_{\bar{X}}^2)
$$
, where $\mu_{\bar{X}} = \mu, \sigma_{\bar{X}}^2 = \frac{\sigma^2}{n}$

 $\sigma_{\bar{X}} =$ σ $\frac{1}{\sqrt{n}}$: standard error.

The Central Limit Theorem

Three Distributions

Based on the previous research, the expression of $Pou5f1$ in all ES cells follow a normal distribution with $\mu=3$ and $\sigma^2=4^2.$

Estimation

Use info. from the sample to do a point estimation

• Estimator

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

$$
S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
$$

• Estimate

$$
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

$$
s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
$$

11/12

Population parameter

$$
\mu, \sigma^2
$$

Sample statistics

$$
\bar{x},s^2
$$

We say the following estimators are unbiased estimators:

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

$$
S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
$$

Because:

$$
\mathbb{E}\left[\bar{\mathbf{X}}\right] = \mu
$$

$$
\mathbb{E}\left[\mathbf{S}^2\right] = \sigma^2
$$