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Sampling Distribution of The Sample Variance
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Start With The Special Case

Task: We draw a sample of size n (X1,X2, · · · ,Xn) from a population (X ∼ D),

where Var (X) = σ2, we want to figure out:

S2 =
1

n− 1

n󰁛

i=1

(Xi − X̄)2 =
1

n− 1

󰁫
(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

󰁬

Simplify: Let X1,X2, · · · ,Xn be i.i.d. random variables from a normal population

N (µ,σ2)

S2 =
1

n− 1

󰁫
(X1 − X̄)2 + (X2 − X̄)2 + · · ·+ (Xn − X̄)2

󰁬

The question becomes: what is the sum of a bunch of squared normal random

variables?
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The Standard Normal Squared

Let Z1,Z2,Z3, · · · ,Zn be i.i.d. standard normal random variables: Zi ∼ N (0, 1),

then
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The Chi-squared (χ2) Distribution

Friedrich Robert Helmert in 1876:
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by induction:

χ2(n) : X(x) =
1

Γ
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where:

Γ(α) =

󰁝 ∞

0
tα−1e−tdt, α > 0

Γ(α) = (α− 1)Γ(α− 1)

Γ(k) = (k − 1)! , when k is an integer

One parameter - the degree of freedom:

the number of independent Z2 in the sum
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The Distribution of S2

By definition:
n󰁛

i=1

󰀣
Xi − µ

σ

󰀤2

∼ χ2(n)

Replacing µ with X̄:
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i=1

󰀣
Xi − X̄

σ

󰀤2

=
1

σ2

n󰁛

i=1

(Xi − X̄)2 ∼ χ2(n− 1)

Manipulate to get the sample variance:

(n− 1)S2

σ2
∼ χ2(n− 1)
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Why n − 1? part 1
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Why? Because:
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(xi −m)2 = n ·m2 −
󰀣
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But why exactly n− 1? Wait until part 2 in Lecture 18
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The Degree of Freedom (DF, DOF, ν)

Typical definition: the number of values in the final calculation of a statistic that are

free to vary; the number of independent pieces of information used to calculate the

statistic.

There are two types of degrees of freedom:

󰀻
󰀿

󰀽
df of the data - df left (statistical cash)

df of the statistical model - df spent (buy with cash)

A statistical model: a mathematical process that attempts to describe the sample

data that come from a population, allowing us to make predictions.
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Different Types of df

Intuitive thinking: the number of cells that can vary in a Spreadsheet.

Data Model
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