Lecture 17 Maximum Likelihood Estimation (MLE)

BIO210 Biostatistics

Xi Chen

Fall, 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF LIFE SCIENCES **Experiment**: A coin, with an unknown $\mathbb{P}(H) = p$, was flipped 10 times. The outcome is HHHTHHHTHH.

Question: What is your best guess for p?

Thinking: Given the data/observation we have, what values should p take such that our data/observation is most likely to occur ?

Aim: find the value that maximise our chance of observing the data, and use that value as our best guess/estimate for p.

$$\mathcal{L}: \mathbb{P} (\mathsf{obs.} \mid \mathbb{P} (H) = p)$$

Estimators of Parameters

 Parameter space Ω: the set of all possible values of a parameter θ or of a vector of parameters (θ₁, θ₂, θ₃, ..., θ_k) is called the parameter space.

- Bernoulli:
$$\theta = p$$
, $\Omega = \{p \mid 0 \leq p \leq 1\}$

- Binomial: $\theta_1 = n, \theta_2 = p, \ \Omega = \{(n, p) \mid n = 2, 3, ..., a \text{ finite number}; 0 \leqslant p \leqslant 1\}$

- Poisson:
$$\theta = \lambda$$
, $\Omega = \{\lambda \mid \lambda \ge 0\}$

- Normal (Gaussian): $\theta_1 = \mu, \theta_2 = \sigma^2$, $\Omega = \{(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 \ge 0\}$
- We refer to an estimator of a parameter θ as $\hat{\theta}$. An estimator $\hat{\theta}$ of a parameter θ is unbiased if $\mathbb{E}\left[\hat{\theta}\right] = \theta$. For example, $\hat{\mu} = \bar{X}$ is an unbiased estimator for μ .

- Maximum likelihood estimation (MLE) is a technique used for estimating the parameters of a given distribution, using some observed data.
- Introduced by R.A. Fisher in 1912.
- MLE can be used to estimate parameters using a limited sample of the population, by finding particular values so that the observation is the most likely result to have occurred.

Formal definition

Let $x_1, x_2, x_3, ..., x_n$ be observations from n **i.i.d** random variables $(X_1, X_2, X_3, ..., X_n)$ drawn from a probability distribution f, where f is known to be from a family of distributions that depend on some parameters θ . The goal of MLE is to maximise the likelihood function:

$$\mathcal{L}(\theta; x_1, x_2, x_3, \dots, x_n) = f(x_1, x_2, x_3, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$$
$$= f(x_1; \theta) \cdot f(x_2; \theta) \cdots f(x_n; \theta)$$

The log-likelihood function:

$$\ell = \ln \mathcal{L} = \sum_{i=1}^{n} \ln f(x_i; \theta)$$

Probability vs. Likelihood

 $\mathcal{L}(\theta; x_1, x_2, x_3, ..., x_n) = f(x_1, x_2, x_3, ..., x_n; \theta)$ the likelihood of the parameter(s) θ taking certain values given that a bunch of data $x_1, x_2, ..., x_n$ are observed. $\mathcal{L}(\theta; x_1, x_2, x_3, ..., x_n; \theta)$ the joint probability mass/density of observing the data $x_1, x_2, ..., x_n$ with model parameter(s) θ .

from Wolfram:

Likelihood is the hypothetical probability that an event that has already occurred would yield a specific outcome. The concept differs from that of a probability in that a **probability** refers to the occurrence of future events, while a **likelihood** refers to past events with known outcomes.

Maximum Likelihood Estimation (MLE): Example 1

- Other notation: $\mathcal{L}(\theta|x_1, x_2, x_3, ..., x_n) = f(x_1, x_2, x_3, ..., x_n|\theta) = \prod_{i=1}^n f(x_i|\theta)$
- **Example 1**: A coin, with an unknown $\mathbb{P}(H) = p$, was flipped 10 times. The outcome is HHHTHHHTHH. What is the MLE for p?
- \circ 1. Specify the parameter $\theta: p$
- \circ 2. Specify the parameter space Ω : { $p \mid 0 \leqslant p \leqslant 1$ }
- 3. Write out the probability function $\mathbb{P}_{\mathbf{X}}(k) = \begin{cases} p & \text{, when } k = 1 \\ 1 p & \text{, when } k = 0 \end{cases}$
- 4. Write out the likelihood function:

 $\mathcal{L}(p;1110111011) = f(1110111011;p) = \prod_{i=1}^{10} f(x_i;p)$

 $= f(1;p) \cdot f(1;p) \cdot f(1;p) \cdot f(0;p) \cdot f(1;p) \cdot f(1;p) \cdot f(1;p) \cdot f(0;p) \cdot f(1;p) \cdot f(1;p)$ = $p \cdot p \cdot p \cdot (1-p) \cdot p \cdot p \cdot p \cdot (1-p) \cdot p \cdot p = p^8 (1-p)^2$

6/8

Maximum Likelihood Estimation (MLE): Example 2

 Example 3 DNA synthesis errors: The genetic material is copied and synthesised by DNA polymerase. One high-fidelity DNA polymerase, *Pfu*, originally isolated from the hyperthermophilic archae *Pyrococcus furiosus*, is believed to have very low error rate. Assume the errors generated by *Pfu* follow a Poisson distribution with λ mutations per 10⁶ base pairs (Mb). We have examined n newly synthesised DNA fragments and observed that the nubmer of mutations per Mb is k₁, k₂, k₃, ..., k_n. What is the MLE for λ?

- 1.
$$\theta:\lambda$$

- 2. $\boldsymbol{\Omega}$: { $\lambda \mid \lambda > 0$ } - 3. $\mathbb{P}_{\boldsymbol{X}}(k) = \frac{\lambda^k}{k!}e^{-\lambda}$

- 4.
$$\mathcal{L}(\lambda; k_1, k_2, ..., k_n) = f(k_1, k_2, ..., k_n; \lambda) = \prod_{i=1}^n \frac{\lambda^{\kappa_i}}{k_i!} e^{-\lambda}$$

Advantages and Disadvantages of MLE

Advantages:

- Intuitive and straightforward to understand.
- If the model is correctly assumed, the MLE is efficient (meaning small variance or mean squared error).
- Can be extended to do other useful things.

Disadvantages:

- Relies on assumptions of a model (need to know the PMF/PDF).
- Sometimes difficult or impossible to solve the derivate of $\mathcal L$ or ℓ .
- Sometimes leads to the wrong or biased conclusions