Lecture 17 Maximum Likelihood Estimation (MLE)

BIO210 Biostatistics

Xi Chen

Fall, 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF **LIFE SCIENCES** **Experiment:** A coin, with an unknown $\mathbb{P}(H) = p$, was flipped 10 times. The outcome is *HHHT HHHT HH*.

Question: What is your best guess for *p* ?

Thinking: Given the data/observation we have, what values should *p* take such that our data/observation is most likely to occur ?

Aim: find the value that maximise our chance of observing the data, and use that value as our best guess/estimate for *p*.

Estimators of Parameters

• **Parameter space** Ω : the set of all possible values of a parameter θ or of a vector of parameters $(\theta_1, \theta_2, \theta_3, ..., \theta_k)$ is called the parameter space.

- Bernoulli:
$$
\theta = p
$$
, $\Omega = \{p \mid 0 \leq p \leq 1\}$

- Binomial: $\theta_1 = n, \theta_2 = p, \Omega = \{(n, p) \mid n = 2, 3, ..., \text{ a finite number}; 0 \leq p \leq 1\}$

- Poisson:
$$
\theta = \lambda
$$
, $\Omega = \{\lambda \mid \lambda \geq 0\}$

- Normal (Gaussian): $\theta_1 = \mu, \theta_2 = \sigma^2, \Omega = \{(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma^2 \geq 0\}$
- We refer to an estimator of a parameter θ as $\hat{\theta}$. An estimator $\hat{\theta}$ of a parameter θ is unbiased if $\mathbb{E}\left[\hat{\theta}\right]=\theta.$ For example, $\hat{\mu}=\bar{X}$ is an unbiased estimator for $\mu.$
- *•* Maximum likelihood estimation (MLE) is a technique used for estimating the parameters of a given distribution, using some observed data.
- *•* Introduced by R.A. Fisher in 1912.
- *•* MLE can be used to estimate parameters using a limited sample of the population, by finding particular values so that the observation is the most likely result to have occurred.

Formal definition

Let $x_1, x_2, x_3, \ldots, x_n$ be observations from *n* i.i.d random variables $(X_1, X_2, X_3, \ldots, X_n)$ drawn from a probability distribution f, where f is known to be from a family of distributions that depend on some parameters θ . The goal of MLE is to maximise the likelihood function:

$$
\mathcal{L}(\theta; x_1, x_2, x_3, ..., x_n) = f(x_1, x_2, x_3, ..., x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)
$$

$$
= f(x_1; \theta) \cdot f(x_2; \theta) \cdots f(x_n; \theta)
$$

The log-likelihood function:

$$
\ell = \ln \mathcal{L} = \sum_{i=1}^{n} \ln f(x_i; \theta)
$$

Probability vs. Likelihood

 $\mathcal{L}(\theta; x_1, x_2, x_3, ..., x_n) = f(x_1, x_2, x_3, ..., x_n; \theta)$ the likelihood of the parameter(s) θ taking certain values given that a bunch of data $x_1, x_2, ..., x_n$ are observed.

from [Wolfram:](https://mathworld.wolfram.com/Likelihood.html)

Likelihood is the hypothetical probability that an event that has already occurred would yield a specific outcome. The concept differs from that of a probability in that a **probability** refers to the occurrence of future events, while a likelihood refers to past events with known outcomes.

the joint probability mass/density of observing the data $x_1, x_2, ..., x_n$ with model parameter(s) θ .

Maximum Likelihood Estimation (MLE): Example 1

- Other notation: $\mathcal{L}(\theta | x_1, x_2, x_3, ..., x_n) = f(x_1, x_2, x_3, ..., x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$
- **Example 1**: A coin, with an unknown $\mathbb{P}(H) = p$, was flipped 10 times. The outcome is $HHHTHHHTHH$. What is the MLE for p?
- \circ 1. Specify the parameter θ : *p*
- **○** 2. Specify the parameter space Ω : {*p* | 0 ≤ *p* ≤ 1} $\sqrt{ }$
- \circ 3. Write out the probability function $\mathbb{P}_{\boldsymbol{X}}(k) =$ \bigcup \mathcal{L} p , when $k=1$ $1-p$, when $k=0$
- 4. Write out the likelihood function:

 $\mathcal{L}(p; 1110111011) = f(1110111011; p) = \prod f(x_i; p)$ 10 $i=1$

 $= f(1;p) \cdot f(1;p) \cdot f(1;p) \cdot f(0;p) \cdot f(1;p) \cdot f(1;p) \cdot f(1;p) \cdot f(0;p) \cdot f(1;p) \cdot f(1;p)$ $p = p \cdot p \cdot p \cdot (1-p) \cdot p \cdot p \cdot (1-p) \cdot p \cdot p = p^8(1-p)^2$ 2 6/8

Maximum Likelihood Estimation (MLE): Example 2

- *•* Example 3 DNA synthesis errors: The genetic material is copied and synthesised by DNA polymerase. One high-fidelity DNA polymerase, *Pfu*, originally isolated from the hyperthermophilic archae *Pyrococcus furiosus*, is believed to have very low error rate. Assume the errors generated by *Pfu* follow a Poisson distribution with λ mutations per 10⁶ base pairs (Mb). We have examined *n* newly synthesised DNA fragments and observed that the nubmer of mutations per Mb is $k_1, k_2, k_3, ..., k_n$. What is the MLE for λ ?
- $-1. \theta : \lambda$
- $-$ 2. Ω : $\{\lambda \mid \lambda > 0\}$ - 3. $\mathbb{P}_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$ - 4. $\mathcal{L}(\lambda; k_1, k_2, ..., k_n) = f(k_1, k_2, ..., k_n; \lambda) = \prod_{i=1}^n$ λ^{k_i} *ki*! $e^{-\lambda}$

Advantages and Disadvantages of MLE

Advantages:

- Intuitive and straightforward to understand.
- If the model is correctly assumed, the MLE is efficient (meaning small variance or mean squared error).
- *•* Can be extended to do other useful things.

Disadvantages:

- *•* Relies on assumptions of a model (need to know the PMF/PDF).
- *•* Sometimes difficult or impossible to solve the derivate of *L* or ℓ.
- *•* Sometimes leads to the wrong or biased conclusions