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Intuition over MLE

Experiment: A coin, with an unknown P (H) = p, was flipped 10 times. The outcome

is HHHTHHHTHH.

Question: What is your best guess for p ?

Thinking: Given the data/observation we have, what values should p take such that

our data/observation is most likely to occur ?

Aim: find the value that maximise our chance of observing the data, and use that

value as our best guess/estimate for p.

p

L : P (obs. |P (H) = p)
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Estimators of Parameters

• Parameter space Ω: the set of all possible values of a parameter θ or of a vector

of parameters (θ1, θ2, θ3, ..., θk) is called the parameter space.

- Bernoulli: θ = p, Ω = {p | 0 󰃑 p 󰃑 1}
- Binomial: θ1 = n, θ2 = p, Ω = {(n, p) | n = 2, 3, ..., a finite number; 0 󰃑 p 󰃑 1}
- Poisson: θ = λ, Ω = {λ | λ 󰃍 0}
- Normal (Gaussian): θ1 = µ, θ2 = σ2, Ω = {(µ,σ2) | µ ∈ R,σ2 󰃍 0}

• We refer to an estimator of a parameter θ as θ̂. An estimator θ̂ of a parameter θ

is unbiased if E
󰁫
θ̂
󰁬
= θ. For example, µ̂ = X̄ is an unbiased estimator for µ.
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Maximum Likelihood Estimation (MLE)

• Maximum likelihood estimation (MLE) is a technique used for estimating the

parameters of a given distribution, using some observed data.

• Introduced by R.A. Fisher in 1912.

• MLE can be used to estimate parameters using a limited sample of the

population, by finding particular values so that the observation is the most likely

result to have occurred.
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Maximum Likelihood Estimation (MLE)

Formal definition

Let x1, x2, x3, ..., xn be observations from n i.i.d random variables

(X1,X2,X3, ...,Xn) drawn from a probability distribution f , where f is known to

be from a family of distributions that depend on some parameters θ. The goal of

MLE is to maximise the likelihood function:

L(θ;x1, x2, x3, ..., xn) = f(x1, x2, x3, ..., xn; θ) =

n󰁜

i=1

f(xi; θ)

= f(x1; θ) · f(x2; θ) · · · f(xn; θ)
The log-likelihood function:

ℓ = lnL =

n󰁛

i=1

ln f(xi; θ)
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Probability vs. Likelihood

L(θ;x1, x2, x3, ..., xn) = f(x1, x2, x3, ..., xn; θ)

the likelihood of the parameter(s) θ

taking certain values given that a bunch

of data x1, x2, ..., xn are observed.

the joint probability mass/density

of observing the data x1, x2, ..., xn

with model parameter(s) θ.

from Wolfram:

Likelihood is the hypothetical probability that an event that has already occurred would yield a

specific outcome. The concept differs from that of a probability in that a probability refers to

the occurrence of future events, while a likelihood refers to past events with known outcomes.
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Maximum Likelihood Estimation (MLE): Example 1

• Other notation: L(θ|x1, x2, x3, ..., xn) = f(x1, x2, x3, ..., xn|θ) =
󰁔n

i=1 f(xi|θ)

• Example 1: A coin, with an unknown P (H) = p, was flipped 10 times. The

outcome is HHHTHHHTHH. What is the MLE for p?

◦ 1. Specify the parameter - θ : p

◦ 2. Specify the parameter space - Ω : {p | 0 󰃑 p 󰃑 1}

◦ 3. Write out the probability function - X(k) =

󰀻
󰀿

󰀽
p , when k = 1

1− p , when k = 0

◦ 4. Write out the likelihood function:

L(p; 1110111011) = f(1110111011; p) =

10󰁜

i=1

f(xi; p)

= f(1; p) · f(1; p) · f(1; p) · f(0; p) · f(1; p) · f(1; p) · f(1; p) · f(0; p) · f(1; p) · f(1; p)
= p · p · p · (1− p) · p · p · p · (1− p) · p · p = p8(1− p)2 6/8



Maximum Likelihood Estimation (MLE): Example 2

• Example 3 DNA synthesis errors: The genetic material is copied and

synthesised by DNA polymerase. One high-fidelity DNA polymerase, Pfu,

originally isolated from the hyperthermophilic archae Pyrococcus furiosus, is

believed to have very low error rate. Assume the errors generated by Pfu follow a

Poisson distribution with λ mutations per 106 base pairs (Mb). We have

examined n newly synthesised DNA fragments and observed that the nubmer of

mutations per Mb is k1, k2, k3, ..., kn. What is the MLE for λ?

- 1. θ : λ

- 2. Ω : {λ | λ > 0}

- 3. X(k) =
λk

k!
e−λ

- 4. L(λ; k1, k2, ..., kn) = f(k1, k2, ..., kn;λ) =
󰁔n

i=1

λki

ki!
e−λ
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Advantages and Disadvantages of MLE

Advantages:

• Intuitive and straightforward to understand.

• If the model is correctly assumed, the MLE is efficient (meaning small variance or

mean squared error).

• Can be extended to do other useful things.

Disadvantages:

• Relies on assumptions of a model (need to know the PMF/PDF).

• Sometimes difficult or impossible to solve the derivate of L or ℓ.

• Sometimes leads to the wrong or biased conclusions
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