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Population Parameters We Have Learnt

Population parameters Sample statistics

µ x̄

σ2 s2

σ s

π or p p or p̂
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The Central Dogma

Credit: “Ideas on protein synthesis (Oct. 1956)”. Wellcome Collection.
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Sample Proportion Example

Gene expression (over-simplified RNA-seq): We know the probability of detecting

PLK1 is π = 0.000001126088083. If we take a random sample of n = 1, 000, 000

mRNA molecules, what is the sampling distribution of proportion of PLK1?

N (µ = 1.126× 10−6,

σ2 = 1.126× 10−12)?

Results from 1,000 samples:

(n = 1, 000, 000)

N (1.126, 1.126)

Poisson λ = 1.126
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Approximation of The Binomial Distribution

B(n, p)

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∼̇ N (µ = np,σ2 = npq) , when np 󰃍 10 and nq 󰃍 10

∼̇ Pois(λ = np) , when n is large, and p is small,

such that np is between 0 and 10.

∼ B(n, p) , otherwise
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The Limitations on np and nq

−2 0 2 4 6 8 10 12

B(10, 0.2), N (2, 1.6)
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B(10, 0.5), N (5, 2.5)
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B(10, 0.8), N (8, 1.6)
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The Limitations on np and nq

• Binomial: all data are within [0, n]

• Normal: no bounds (−∞, +∞) for data, but most are within [µ− 3σ, µ+ 3σ]

• Intuitively: when [µ− 3σ, µ+ 3σ] is within [0, n], the approximation works well!

µ− 3σ > 0

np− 3
√
npq > 0

np > 3
√
npq

n2p2 > 9npq

np > 9q

np > 9(1− p) = 9− 9p

µ+ 3σ < n

np+ 3
√
npq < n

n(1− p) > 3
√
npq

n2q2 > 9npq

nq > 9p

nq > 9(1− q) = 9− 9q
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Interval Estimation For The Proportion

Goal: for a population containing an unknown proportion (π) of data of our interest,

find a and b, such that P (a 󰃑 π 󰃑 b) = 0.95.

P (−1.96 󰃑 Z 󰃑 1.96) = 0.95

P
󰀕
−1.96 󰃑 p− µP

σP
󰃑 1.96

󰀖
= 0.95

P

󰀳

󰁃−1.96 󰃑
p− π

󰁴
π(1−π)

n

󰃑 1.96

󰀴

󰁄 = 0.95

P

󰀣
p− 1.96

󰁵
π(1− π)

n
󰃑 π 󰃑 p+ 1.96

󰁵
π(1− π)

n

󰀤
= 0.95
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Confidence Interval For The Proportion

95% CI For The Sample Proportion

The Wald Interval:
󰀥
p− 1.96

󰁵
p(1− p)

n
, p+ 1.96

󰁵
p(1− p)

n

󰀦

• Not using t-distribution? - You don’t need to! Remember σP =

󰁶
π(1− π)

n
,

and when p is calculated to estimate π, then σP is automatically determined,

unlike in the situation of the mean, where you have to do extra (independent)

calculation of s to estimate σ, which causes the extra error.
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Simulation of 95% CI For The Proportion

100 95% CI for the proportion, constructed using the Wald interval
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An Example in Lecture 1

Probability vs. Statistics

Probability: Previous studies showed that the drug was 80% effective. Then

we can anticipate that for a study on 100 patients, on average

80 will be cured and at least 65 will be cured with 99.99%

chance.

Statistics: We observe that 78/100 patients were cured by the drug. We

will be able to conclude that we are 95% confident that for

other studies the drug will be effective on between 69.88% and

86.11% of patients.
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Sample Size Estimation Using Confidence Interval of The Proportion

Estimate Sample Size: We want to estimate the percentage of people cured by the

drug. Suppose we could draw a truly random sample, and we want a 95% confidence

interval estimation with a margin of error no more than ± 2%. What is the smallest

sample size required to obtain the desired margin of error ?

95% confidence interval: p ± 1.96

󰁶
p(1− p)

n

Goal: find the smallest n such that it guarantees that 1.96

󰁶
p(1− p)

n
󰃑 0.02
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Conditions For Interval Estimation For The Proportion

1. Random Samples

2. Normal Condition: the sampling distribution of p needs to be normal

- np 󰃍 10

- nq 󰃍 10

3. Independence (n < 10% population size)
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What to do when the normal condition is not met?

• Wilson score interval

• Jeffreys interval

• Agresti–Coull interval

• Arcsine transformation

• Clopper–Pearson interval (the exact method)
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