Lecture 26 Error, Power And Sample Size Estimation BIO210 Biostatistics

Xi Chen

Fall, 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF LIFE SCIENCES

Significance level α : never 0 !

Hypothesis testing

Truth	Population	
Decision	H_0 is true	H_0 is false
Reject H_0	Type I Error	\checkmark
Do not reject H_0	\checkmark	Type II Error

Probability of Making Different Errors

- $\mathbb{P}(\mathsf{Type} | \mathsf{Error}) = ?$
- $\mathbb{P}(\text{reject } H_0 | H_0 \text{ is true}) = ?$

When H_0 is true:

Type I error is also called the rejection

error or α error.

- $\mathbb{P}(\mathsf{Type II Error}) = ?$
- $\mathbb{P}(\text{Do not reject } H_0 | H_0 \text{ is false}) = \beta$
- $1-\beta$ is more useful in reality

Definition

The Power of the test is defined as $\mathbb{P}(\text{reject } H_0 \mid H_0 \text{ is false}) = 1 - \beta$

Calculating Power - Roughly

- Serum cholesterol level for 20- to 74-year-old males
- Truth about the whole population: normally distributed, mean 200 mg/100ml ($\mu = 200$), standard deviation 46 mg/100ml ($\sigma = 46$): we don't know this!
- A subpopulation (20- to 24-year-old males): normally distributed, mean 180 mg/100ml ($\mu = 180$), standard deviation 46 mg/100ml ($\sigma = 46$): we do know this from a previous study!
- Now we are interested in serum cholesterol level for 20- to 74-year-old males, and a random sample of size (n = 25) is drawn from the 20- to 74-year-old male population. We conduct a hypothesis testing about the mean.

Calculating Power - Roughly

 We have reasons to believe that the mean serum cholesterol level of 20- to 74-year-old male should be higher than 180 mg/100ml.

- $H_0: \mu \leqslant \mu_0 = 180 \text{ mg}/100 \text{ml}$
- $H_1: \mu > \mu_0 = 180 \text{ mg}/100 \text{ml}$

- Truth:

 $H_1: \mu = \mu_1 = 200 \, \, \mathrm{mg}/100 \mathrm{ml}$

$$\bar{x}_{\text{reject}} = 180 + 1.645 \times \frac{46}{\sqrt{25}} = 195.1$$

Calculating Power - Roughly

What we want to calculate: Power $(1 - \beta)$: \mathbb{P} (reject $H_0 \mid H_0$ is false) Truth: $H_1 : \mu = \mu_1 = 200 \text{ mg}/100 \text{ml}$

$$\begin{split} \beta &= \mathbb{P} \left(\text{do not reject } H_0 \mid H_0 \text{ is false} \right) \\ &= \mathbb{P} \left(\bar{x} \leqslant 195.1 \mid \mu_{\bar{X}} = \mu_1 = 200, \ \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{25}} = \frac{46}{5} = 9.2 \right) \\ &= \mathbb{P} \left(z \leqslant \frac{195.1 - 200}{9.2} \right) = \mathbb{P} \left(z \leqslant -0.53 \right) = 0.298 \end{split}$$

Power: $1 - \beta = 1 - 0.298 = 0.702$

How To Increase Power

Increasing the power of the test

- 1. Shift \bar{x}_{reject} to the left
- 2. μ_0 shifts to the left, or μ_1 shifts to the right.
- 3. Make the sampling distribution narrower

Ways of achieving the goal

- 1. Increase α
- 2. Increase $|\mu_0 \mu_1|$
- 3. Decrease $\sigma_{\bar{X}} \Leftrightarrow \text{Increase } n$

In the previous example about the serum cholesterol level, suppose we want a significance level of 0.01 and a power of 0.95. What is the minimum sample size needed for the test?

 $\alpha = 0.01, \beta = 0.05$, power = 0.95: when H_0 is true, we want to risk a 1% chance of rejecting it; when H_0 is false, we want to risk a 5% chance of failing to reject it. The power of the test is 95%.

Sample Size Estimation

1. The minimum sample mean to reject H_0 : $\bar{x}_{reject} = 180 + 2.32 \times \frac{46}{\sqrt{n}}$ 2. Calculate β :

$$\beta = \mathbb{P}\left(\bar{x} \leqslant \bar{x}_{\text{reject}} \mid H_0 \text{ is false}\right) = \mathbb{P}\left(\bar{x} \leqslant \bar{x}_{\text{reject}} \mid \mu_{\bar{X}} = 200, \sigma_{\bar{X}} = \frac{46}{\sqrt{n}}\right)$$
$$= \mathbb{P}\left(z \leqslant \frac{180 + 2.32 \times \frac{46}{\sqrt{n}} - 200}{\frac{46}{\sqrt{n}}}\right) = 0.05 \Rightarrow n = 83.165$$

Sample Size Estimation For One Sided Test For The Mean

1. The minimum sample mean to reject H_0 : $\bar{x}_{reject} = \mu_0 + Z_\alpha \times \frac{\sigma}{\sqrt{n}}$ 2. Calculate β :

$$\beta = \mathbb{P}\left(\bar{x} \leqslant \bar{x}_{\text{reject}} \mid H_0 \text{ is false}\right) = \mathbb{P}\left(\bar{x} \leqslant \bar{x}_{\text{reject}} \mid \mu_{\bar{X}} = \mu_1, \sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}\right)$$
$$= \mathbb{P}\left(z \leqslant \frac{\mu_0 + Z_\alpha \times \frac{\sigma}{\sqrt{n}} - \mu_1}{\frac{\sigma}{\sqrt{n}}}\right) \Rightarrow n = \left[\frac{(Z_\alpha + Z_\beta)\sigma}{\mu_1 - \mu_0}\right]^2$$

11/12

Sample Size Estimation For One Sided Test For The Proportion

1. The minimum sample mean to reject
$$H_0$$
: $p_{\text{reject}} = \pi_0 + Z_\alpha \times \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$
2. Calculate β :

$$\begin{aligned} \beta &= \mathbb{P}\left(p \leqslant p_{\mathsf{reject}} \mid H_0 \text{ is false}\right) = \mathbb{P}\left(p \leqslant p_{\mathsf{reject}} \mid \mu_p = \pi_1, \sigma_p = \sqrt{\frac{\pi_1(1 - \pi_1)}{n}}\right) \\ \Rightarrow n &= \left[\frac{Z_\alpha \sqrt{\pi_0(1 - \pi_0)} + Z_\beta \sqrt{\pi_1(1 - \pi_1)}}{\pi_1 - \pi_0}\right]^2 \end{aligned}$$

12/12