Lecture 27 Compare Two Populations - Proportion

BIO210 Biostatistics

Xi Chen

Fall, 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF LIFE SCIENCES

Compare two proportions

Whether the proportions of colour blindness are the same in two different populations (e.g. male vs female, Asian vs European) ? Whether chemical A is better than chemical B for culturing cells in petri dishes (can be measured by percentage of cells that express *Pou5f1*)? Whether drug A is more efficient than drug B in terms of curing a certain disease (can be measured by percentage of cured patients) ?

ABO Blood Types And The COVID-19

Clinical Infectious Diseases

BRIEF REPORT

Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility

Jiao Zhao,^{1,a} Yan Yang,^{2,a} Hanping Huang,^{3,a} Dong Li,^{4,a} Dongfeng Gu,¹ Xiangfeng Lu,⁵ Zheng Zhang,² Lei Liu,² Ting Liu,³ Yukun Liu,⁶ Yunjiao He,¹ Bin Sun,¹ Meilan Wei,¹ Guangyu Yang,^{7,b} Xinghuan Wang,^{8,b} Li Zhang,^{3,b} Xiaoyang Zhou,^{4,b} Mingzhao Xing,^{1,b} and Peng George Wang^{1,b}

¹School of Medicine, The Southern University of Science and Technology, Shenzhen,

Type A blood in normal people and COVID-19 patients

Two choices:

- $H_0: \pi_1 = 0.38$
 - $H_1: \ \pi_1 \neq 0.38$
- $H_0: \ \pi_2 = 0.32$ $H_1: \ \pi_2 \neq 0.32$

Two anwsers:

- z = -7.5
 - $p = 6.4 \times 10^{-14}$
- z = 4.4
 - $p = 1.1 \times 10^{-5}$

Strategy 2: Figure Out The Sampling Distribution of The Difference

- Let the random variable P_1 represent the proportion of blood type A in a sample $(n_1 = 3694)$ drawn from normal people.
- Let the random variable P_2 represent the proportion of blood type A in a sample $(n_2 = 1775)$ drawn from COVID-19 patients.

Sampling Distribution of The Difference of The Sample Proportion

•
$$\boldsymbol{D} \sim \mathcal{N}\left(\pi_1 - \pi_2, \ \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}\right)$$

• $\boldsymbol{D} = \boldsymbol{P}_1 - \boldsymbol{P}_2$ and $d = p_1 - p_2$ are the point estimator/estimate of δ

• 95% CI:
$$(p_1 - p_2) \pm 1.96 \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

Type A blood in normal people and COVID-19 patients

Two-sample Hypothesis Testing For Proportion

1. What we observe is:
$$d = p_1 - p_2$$

2. What is the probability of observing d or more extreme?

$$z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\pi(1 - \pi)}} = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\pi(1 - \pi)}}$$

What is the best estimate for π ?

Two-sample Hypothesis Testing For Proportion

	Normal	COVID-19
А	a	b
Non-A	С	d
Total	n_1	n_2

Sample size: bigger is always better:

$$\pi:\frac{a+b}{n_1+n_2}=\frac{n_1p_1+n_2p_2}{n_1+n_2}=p$$

The test statistic:

$$z = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)p(1-p)}}$$

The test statistic:

$$p = \frac{1188 + 670}{3694 + 1775} = 0.34, \ z = \frac{0.32 - 0.38}{\sqrt{\left(\frac{1}{3694} + \frac{1}{1775}\right) \times 0.34 \times 0.66}} = -4.4$$

Example: Two-sample Hypothesis Testing For Proportion

Myopia: Researchers suspect that myopia, or nearsightedness, is becoming more common over time. A study from the year 2000 showed 139 cases of myopia in 420 randomly selected people. A separate study from 2015 showed 228 cases in 600 randomly selected people. Perform a hypothesis testing to see if the researchers' suspicion is true or not.

Sample statistics: $n_1 = 420, p_1 = \frac{139}{420} = 0.33, n_2 = 600, p_2 = \frac{228}{600} = 0.38$ Pooled estimate for π : $p = \frac{139 + 228}{420 + 600} = 0.36$ The test statistics: $z = \frac{p_1 - p_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)p(1 - p)}} = \frac{0.33 - 0.38}{\sqrt{\left(\frac{1}{420} + \frac{1}{600}\right) \times 0.36 \times 0.64}}$