Lecture 31 Analysis of Variance (ANOVA)

BIO210 Biostatistics

Xi Chen

Fall, 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF LIFE SCIENCES

Compare More Than Two Means

More than two-samples

Intuitive way: compare all possible pairs using two-sample independent t test:

Samples 1 vs 2: $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ Samples 1 vs 3: $H_0: \mu_1 = \mu_3; H_1: \mu_1 \neq \mu_3$ Samples 2 vs 3: $H_0: \mu_2 = \mu_3; H_1: \mu_2 \neq \mu_3$

Good enough?

What if we have 15 samples from 15 different populations ?

- Intuitive way: compare all possible pairs using two-sample independent t test:
- Number of comparisons: ${15 \choose 2} = \frac{15 \times 14}{2} = 105$
- Significance level: $\alpha=0.05$
- When we set $\alpha = 0.05$, we want to tolerate a 5% of chance of making a type I error. That is, the number of tests that have made a type I error: ≈ 5
- Assume that the means are all the same, what is the probability of making a type I error in at least one test ?

 $\mathbb{P}(\text{reject } H_0 \text{ in at least one test} | H_0 \text{ is true})$

- $=1-\mathbb{P}\left(\operatorname{not} \operatorname{rejecting} H_{0} \operatorname{in} \operatorname{all} \operatorname{tests} | H_{0} \operatorname{is true}\right)$
- $=1 0.95^{105}$
- = 0.995

Source of Variation - Total

Sample 1	Sample 2	Sample 3
3	5	5
2	3	6
1	4	7
$\bar{x}_1 = 2$	$\bar{x}_2 = 4$	$\bar{x}_3 = 6$

sum of squares (SS): add up the squared distance between an observation and the mean:

 $\sum (oldsymbol{X} - oldsymbol{ar{X}})^2$

SST: total sum of squares

The grand mean: $\bar{x} = \frac{3+2+1+5+3+4+5+6+7}{9} = 4$ SST = $(3-4)^2 + (2-4)^2 + (1-4)^2 + (5-4)^2 + (3-4)^2 + (4-4)^2 + (5-4)^2 + (6-4)^2 + (7-4)^2 = 30$ What is the df? $df_T = 9 - 1 = 8$

Source of Variation - Within Groups

Sample 1	Sample 2	Sample 3
3	5	5
2	3	6
1	4	7
$\bar{x}_1 = 2$	$\bar{x}_2 = 4$	$\bar{x}_3 = 6$

sum of squares (SS): add up the squared distance between an observation and the mean:

 $\sum (oldsymbol{X} - oldsymbol{ar{X}})^2$

SSW: sum of squares within

$$SSW = (3-2)^2 + (2-2)^2 + (1-2)^2 + (5-4)^2 + (3-4)^2 + (4-4)^2 + (5-6)^2 + (6-6)^2 + (7-6)^2 = df_1 \cdot s_1^2 + df_2 \cdot s_2^2 + df_3 \cdot s_3^2 = 6$$

What is the df ? $df_W = (3-1) + (3-1) + (3-1) = 6$

Source of Variation - Between Groups

Sample 1	Sample 2	Sample 3
3	5	5
2	3	6
1	4	7
$\bar{x}_1 = 2$	$\bar{x}_2 = 4$	$\bar{x}_3 = 6$

SSB: sum of squares between

$$\begin{split} \mathsf{SSB} &= (2-4)^2 + (2-4)^2 + (2-4)^2 + (4-4)^2 + (4-4)^2 + (4-4)^2 + (6-4)^2 + (6-4)^2 + (6-4)^2 \\ &= n_1 \cdot (\bar{x}_1 - \bar{x})^2 + n_2 \cdot (\bar{x}_2 - \bar{x})^2 + n_3 \cdot (\bar{x}_3 - \bar{x})^2 \\ &= 24 \end{split}$$

What is the df ? $df_B = 3 - 1 = 2$

Summary of The Source of Variation

	Sample 1	Sample 2	Sample	3
	3	5	5	
	2	3	6	
	1	4	7	
	$\bar{x}_1 = 2$	$\bar{x}_2 = 4$	$\bar{x}_3 = 6$	_
				Variance-like
Source of Variation	SS (sum of	squares)	$d\!f$	MS (mean square)
Between	24		2	12
Within	6		6	1
Total	30)	8	

Population 1	Sample 1 $(n_1, ar{x}_1, s_1^2)$
Population 2	Sample 2 $(n_2, ar{x}_2, s_2^2)$
Population 3	Sample 3 $(n_3, ar{x}_3, s_3^2)$
÷	÷
Population k	Sample k (n_k, \bar{x}_k, s_k^2)

$$\bar{\bar{x}} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{ij}}{\sum_{i=1}^{k} n_i} = \frac{\sum_{i=1}^{k} n_i \bar{x}_i}{n}$$

Source of Variation	SS	$d\!f$	MS
Between	$SSB = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{\bar{x}})^2$	k-1	$MSB = \frac{SSB}{k-1}$
Within	SSW = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 = \sum_{i=1}^{k} df_i s_i^2$	n-k	$MSW = \frac{SSW}{n-k}$
Total	$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \bar{\bar{x}})^2 = SSB + SSW$	n-1	

The *F*-test

4

$$\begin{cases} H_0: & \mu_1 = \mu_2 = \dots = \mu_k \\ H_1: & \text{not all equal} \end{cases} \Leftrightarrow \begin{cases} H_0: & \text{The main variation is from SSW} \\ H_1: & \text{The main variation is from SSB} \end{cases}$$

Under the null hypothesis:

$${
m SSB\over\sigma^2}\sim \chi^2(k-1)$$
 and ${
m SSW\over\sigma^2}\sim \chi^2(n-k)$, where σ^2 is the common variance

The test statistic:

$$F = \frac{\frac{\text{SSB}}{(k-1)\sigma^2}}{\frac{\text{SSW}}{(n-k)\sigma^2}} = \frac{\text{MSB}}{\text{MSW}} \sim \mathcal{F}(k-1, n-k)$$

p-value: $\mathbb{P}(\text{data} \mid H_0 \text{ is true}) = \mathbb{P}\left(F_{k-1,n-k} \ge \frac{\text{MSB}}{\text{MSW}}\right)$

Source of Variation	SS	$d\!f$	MS	F	p-value
Between	$SSB = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{\bar{x}})^2$	k-1	$MSB = \frac{SSB}{k-1}$		
Within	$SSW = \sum_{i=1}^{k} df_i s_i^2$	n-k	$MSW = \frac{SSW}{n-k}$	$\frac{\rm MSB}{\rm MSW}$	$\mathbb{P}\left(F \ge \frac{\mathrm{MSB}}{\mathrm{MSW}}\right)$
Total	SST = SSB + SSW	n-1			