Lecture 35 Chi-squared Test For Association/Independence BIO210 Biostatistics

Xi Chen

Fall, 2024

School of Life Sciences Southern University of Science and Technology

南方科技大学生命科学学院 SUSTech · SCHOOL OF LIFE SCIENCES

ABO Blood Types Distribution

Clinical Infectious Diseases

BRIEF REPORT

Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility

Jiao Zhao,^{1,a} Yan Yang,^{2,a} Hanping Huang,^{3,a} Dong Li,^{4,a} Dongfeng Gu,¹ Xiangfeng Lu,⁵ Zheng Zhang,² Lei Liu,² Ting Liu,³ Yukun Liu,⁶ Yunjiao He,¹ Bin Sun,¹ Meilan Wei,¹ Guangyu Yang,^{7,b} Xinghuan Wang,^{8,b} Li Zhang,^{3,b} Xiaoyang Zhou,^{4,b} Mingzhao Xing,^{1,b} and Peng George Wang^{1,b}

¹School of Medicine, The Southern University of Science and Technology, Shenzhen,

ABO Blood Types And COVID-19

 $r \ \times \ c$ contingency table

	Α	В	AB	0
Healthy	1,188	920	336	1,250
COVID-19	670	469	178	458

Contingency Table

Extended $r \ \times \ c$ contingency table

Question: Is there any association/relation between ABO blood groups and COVID-19 susceptibility ?

$$\begin{cases} H_0: & \text{No association/No relation} \\ H_1: & \text{There is an association/They are related} \\ & \\ \\ \begin{cases} H_0: & \chi^2 = \sum_{\text{cells}} \frac{(O_i - E_i)^2}{E_i} = 0 \\ \\ H_1: & \chi^2 \neq 0 \Rightarrow \chi^2 > 0 \end{cases}$$

Constructing The Expected Values In The Contingency Table

			Α	В	AB	0	Total		
	Observed:	Healthy COVID-19	1,188 670	920 469	336 178	1,250 458	3,694 1,775		
	-	Total	1,858	3 1,389	514	1,708	5,469		
		A		В		AB		0	Total
Expected	Healthy	1 858 ×	$\frac{3694}{5469}$	$1389 \times \frac{369}{546}$	$\frac{94}{39}$	$514 imes rac{3694}{5469}$	1708	$3 \times \frac{3694}{5469}$	3,694
(if H_0 were true):	COVID-1	19 1858 ×	$\frac{1775}{5469}$	$1389 \times \frac{177}{546}$	75 39	$514 imes rac{1775}{5469}$	1708	$3 \times \frac{1775}{5469}$	1,775
	Total	1,8	58	1,389		514	1	,708	5,469

Constructing The Expected Values In The Contingency Table

			Α	В	AB	0	Total		
	Observed:	Healthy COVID-19	1,188 670	920 469	336 178	1,250 458	3,694 1,775		
	_	Total	1,858	1,389	514	1,708	5,469		
		A		В		AB	0		Total
Expected	Healthy	$3694 \times$	$\frac{1858}{5469}$	$3694 \times \frac{1389}{5469}$	$\frac{9}{9}$ 30	$694 \times \frac{514}{5469}$	$3694 \times$	$\frac{1708}{5469}$	3,694
Expected (if H_0 were true):	COVID-1	9 1775 ×	$\frac{1858}{5469}$	$1775 imes rac{1389}{5469}$	$\frac{9}{9}$ 17	$775 imes rac{514}{5469}$	1775 ×	$\frac{1708}{5469}$	1,775
	Total	1,85	58	1,389		514	1,70	08	5,469

	Α	В	AB	0	Total
Healthy COVID-19	1,188 670	920 469	336 178	1,250 458	3,694 1,775
Total	1,858	1,389	514	1,708	5,469

		Healthy	COVID-19	Total
	Α	1,188	670	1,858
VE	В	920	469	1,389
v.s.	AB	336	178	514
	0	1,250	458	1,708
	Total	3,694	1,775	5,469

- Equivalent
- Test statistics are exactly the same
- *p*-values are exactly the same

Chi-squared Tests *p*-value Calculation

Observed:

	Α	В	AB	0	Total
Healthy	1,188	920	336	1,250	3,694
COVID-19	670	469	178	458	1,775
Total	1,858	1,389	514	1,708	5,469

$$\chi^2 = \sum_{\text{cells}} \frac{(O_i - E_i)^2}{E_i} = 38.00$$

Expected:

	Α	В	AB	0	Total
Healthy	1254.97	938.19	347.18	1153.66	3,694
COVID-19	603.03	450.81	166.82	554.34	1,775
Total	1,858	1,389	514	1,708	5,469

$$df = (r-1)(c-1) = 3$$
$$p = \mathbb{P}\left(\chi_3^2 \ge 38.00\right) = 2.82 \times 10^{-8}$$

8/19

Chi-squared Tests For Homogeneity vs Association/Independence

- Association/Independence:
 - H_0 : no association between variables 1 & 2
 - H_1 : association between variables 1 & 2
- Homogeneity:
 - H_0 : from the same population/have the same distribution
 - H_1 : from different populations/have different distributions
- The test statistics and $\ensuremath{\textit{p}}\xspace$ are exactly the same.
- The way of drawing samples and formulating hypotheses are different.
- Sometimes extremely similar or even indistinguishable.

- Randomness, independence
- Because we used normal approximation for the binomial, we need large sample size: $np \ge 10$ and $nq \ge 10$. This means: all cells in the expected table should be at least 10.

• When normal approximation cannot be used: Fisher's exact test.

Clinical Infectious Diseases

BRIEF REPORT

Relationship Between the ABO Blood Group and the Coronavirus Disease 2019 (COVID-19) Susceptibility

Jiao Zhao, ^{1,a} Yan Yang, ^{2,a} Hanping Huang, ^{3,a} Dong Li, ^{4,a} Dongfeng Gu,¹ Xiangfeng Lu, ⁵ Zheng Zhang, ² Lei Liu, ² Ting Liu, ³ Yukun Liu, ⁴ Yunjiao He, ¹ Bin Sun,¹ Meilan Wei, ¹ Guangyu Yang, ^{3,b} Xinghuan Wang, ^{8,k} Li Zhang, ^{3,b} Xiaoyang Zhou, ^{4,b} Mingzhao Xing, ^{1,b} and Peng George Wang, ^{1,b}

¹School of Medicine, The Southern University of Science and Technology, Shenzhen,

	Α	В	AB	0	Total
Healthy	1,188	920	336	1,250	3,694
COVID-19	670	469	178	458	1,775
Total	1,858	1,389	514	1,708	5,469

$$\chi^{2} = \sum_{\text{cells}} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 38 \,, \ p = \mathbb{P}\left(\chi_{3}^{2} \geqslant 38\right) < 0.05$$

Conclusion: we reject H_0 , which means the data suggest there is some relationship between ABO blood types and COVID-19 susceptibility.

What's next?: We can do *post hoc* tests.

To correct for multiple testing: how many tests are we doing?

Rule of thumb: Define your question and decide the tests in advance.

1. Which blood types have association with COVID-19 ?

Α Non-A Total В Non-B Total Healthy 1.1882.506 3.694 Healthy 920 2.774 3.694 COVID-19 670 1.775 COVID-19 1.775 1.105 469 1.306 Total 1,858 3,611 5,469 Total 1,389 4,080 5,469 AB Non-AB Total Non-O Total 0 3.694 1.250 3.694 Healthy 336 3.358 Healthy 2.444 COVID-19 178 1.597 1.775COVID-19 458 1.317 1.775 Total 514 4.955 5.469 Total 1.708 3.761 5.469

One category vs all the rest.

2. I don't know what I'm looking for, so I'm going to perform tests among all possible pairs:

- A **vs** non-A
- B **vs** non-B
- AB **vs** non-AB
- 0 **vs** non-0
- A & B vs AB & O
- A & O **vs** B & AB
- A & AB **vs** B & O
- B & AB vs A & O
- B & O vs A & AB

One category vs all the rest

	A vs non-A	B vs non-B	AB vs non-AB	O vs non-O
χ^2	16.679	1.457	1.224	36.047
p	4.427×10^{-5}	0.227	0.268	1.926×10^{-9}
	(O_i)	$ -E_i -0.5)^2$		
From the p	baper $\chi^2 = \sum_{\text{cells}}$	E _i B vs non-B	AB vs non-AB	0 vs non-0
From the p χ^2	baper $\chi^2 = \sum_{\text{cells}}$ A vs non-A 16.431	E _i , Ya B vs non-B	AB vs non-AB	O vs non-O 35.674
From the p	baper $\chi^2 = \sum_{\text{cells}}$ A vs non-A 16.431 5.045×10^{-5}	E _i , Ya B vs non-B 1.378 0.240	AB vs non-AB 1.117 0.291	O vs non-O 35.674 2.333×10^{-9}
From the p χ^2 p OR	paper $\chi^2 = \sum_{\text{cells}}$ A vs non-A 16.431 5.045×10^{-5} 1.279	E _i , Ya B vs non-B 1.378 0.240 1.083	AB vs non-AB 1.117 0.291 1.114	O vs non-O 35.674 2.333×10^{-9} 0.680

	Exposed	Unexposed	Total
Disease	а	b	a+b
No disease	С	d	c+d
Total	a+c	b+d	n

 $\mathsf{Odds\ ratio:}\ OR = \frac{P(\mathsf{disease} \mid \mathsf{exposed}) / [1 - P(\mathsf{disease} \mid \mathsf{exposed})]}{P(\mathsf{disease} \mid \mathsf{unexposed}) / [1 - P(\mathsf{disease} \mid \mathsf{unexposed})]}$

$$\hat{OR} = \frac{[a/(a+c)]/[c/(a+c)]}{[b/(b+d)]/[d/(b+d)]} = \frac{a/c}{b/d} = \frac{ad}{bc}$$

Convenient to calculate, but confusing for understanding.

Probability vs Odds

Probability:
$$P(A) = \frac{\text{area of } A}{(\text{area of } A) + (\text{area of } A^C)}$$

Odds: a measurement in favour of an event, $\frac{1}{E}$

$$\frac{P(A)}{P(A^C)} = \frac{P(A)}{1 - P(A)}$$

Randomly choose a ball from the box:

Odds Ratio (OR)

	Category X	Category Y	Total
EOI	а	b	a+b
The rest	С	d	c+d
Total	a+c	b+d	n

Risk (Probability): Risk_{EOI}, Risk_{EOI} under X is
$$\frac{a}{a+c}$$
, Risk_{EOI} under Y is $\frac{b}{b+d}$
Relative risk (ratio of probability): $RR = \frac{\text{Risk}_{EOI} \text{ under X}}{\text{Risk}_{EOI} \text{ under Y}}$
Odds (ratio of probability): Odds_{EOI}, Odds_{EOI} under X is $\frac{a/(a+c)}{c/(a+c)} = \frac{a}{c}$, Odds_{EOI} under Y is $\frac{b/(b+d)}{d/(b+d)} = \frac{b}{d}$
Odds ratio (ratio of ratio of probability): $OR = \frac{\text{Odds}_{EOI} \text{ under X}}{\text{Odds}_{EOI} \text{ under Y}} = \frac{a/c}{b/d} = \frac{ad}{bc}$

Sampling Distribution of lnRR & lnOR

	Category X	Category Y	Total
EOI	а	b	a+b
The rest	С	d	c+d
Total	a+c	b+d	n

10,000 simulations under the null hypothesis and keep records of RR and OR:

17/19

Sampling Distribution of $\ln OR$

	Category X	Category Y	Total
EOI	а	b	a+b
The rest	С	d	c+d
Total	a+c	b+d	n

•
$$\ln \hat{\mathsf{OR}} \sim \mathcal{N}\left(0, \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$$

- 95% CI: $\ln \hat{OR} \pm Z_{0.025} \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$ or $\ln \hat{OR} \pm 1.96 \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$
- 95% CI with continuity correction: $\ln \hat{OR} \pm 1.96 \sqrt{\frac{1}{a+0.5} + \frac{1}{b+0.5} + \frac{1}{c+0.5} + \frac{1}{d+0.5}}$

Reproduce The Result

one category vs the rest post not tests (with continuity correction).								
	A vs	non-A	B vs non-B		AB vs non-AB		O vs non-O	
Healthy COVID-19	1,188 670	2,506 1,105	920 469	2,774 1,306	336 178	3,358 1,597	1,250 458	2,444 1,317
χ ² p OR 95% CI	$\begin{array}{c} 16.431 \\ 5.045 \times 10^{-5} \\ 0.782 \\ [0.695, \ 0.880] \end{array}$		1.378 0.240 0.924 [0.812, 1.051]		1.117 0.291 0.898 [0.741, 1.087]		35.674 2.333×10^{-9} 1.471 [1.296, 1.667]	
Results from the paper:								
	A vs	non-A	B vs	non-B	AB vs	non-AB	O vs i	non-O

One category vs the rest *post* hoc tests (with continuity correction):

	A vs non-A	B vs non-B	AB vs non-AB	O vs non-O
OR	1.279	1.083	1.114	0.680
95% CI	[1.136, 1.440]	[0.952, 1.232]	[0.920, 1.349]	[0.599, 0.771]
				10/1