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Simple Linear Regression

y = ax+ b
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Using OLS regression:

SEline =

n󰁛

i=1

[yi − (axi + b)]2
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a =
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i=1(xi − x̄)(yi − ȳ)
󰁓n

i=1(xi − x̄)2

b = ȳ − a · x̄
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Simple Linear Regression - the model

x
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Simple Linear Regression is a statistical method that allows us to summarize and

study relationships between two continuous (quantitative) variables.

X: independent variable explanatory variable predictor variable

Y : dependent variable outcome variable response variable

The Simple Linear Regression Model using OLS:

For the entire population: Y = β0 + β1X + 󰂃

For each observation: yi = β0 + β1xi + 󰂃i

where:

β0 is the population intercept

β1 is the population slope

󰂃i is the error from yi to the line β0 + β1xi

population regression line
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Simple Linear Regression - the model
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Best Fit Line
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To estimate the

population parameters

β0, β1

Take a sample

(size n)

OLS

ŷ = β̂0 + β̂1x

󰂃i = yi − ŷi

β̂0 : sample intercept

β̂1 : sample slope

󰂃i : residual

In OLS,
󰁓n

i=1 󰂃i
2 is minimised.

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

β̂1 =

󰁓n
i=1(xi − x̄)(yi − ȳ)
󰁓n

i=1(xi − x̄)2

β̂0 = ȳ − β̂1 · x̄
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Evaluation of the model: Coefficient of Determination r2

x

y

ŷ = β̂0 + β̂1x

󰂃i = yi − ŷi

minimise
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i=1

󰂃i
2
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β̂1 =
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i=1(xi − x̄)(yi − ȳ)
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i=1(xi − x̄)2

β̂0 = ȳ − β̂1 · x̄
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How useful is the model?

ȳ
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ŷi − ȳ

yi − ȳ = (yi − ŷi) + (ŷi − ȳ)

total
deviation

unexplained
deviation due to error

deviation explained
by the regression line

Sum of squares total:

SST =
󰁓n

i=1(yi − ȳ)2

Sum of squares regression:

SSR =
󰁓n

i=1(ŷi − ȳ)2

Sum of squares error/residual:

SSE =
󰁓n

i=1(yi − ŷi)
2

SST = SSR+ SSE

r2 =
explained

total

=
SSR

SST
= 1−

SSE

SST
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The ANOVA Table For OLS

Source of

Variation
SS d.f. MS

Regression SSR =
n󰁓

i=1
(ŷi − ȳ)2 1 MSR =

SSR

1
= SSR

ph ph ph ph

Error/Residual SSE =
n󰁓

i=1
(yi − ŷi)

2 n− 2 MSE =
SSE

n− 2
ph ph ph ph

Total SST =
n󰁓

i=1

(yi − ȳ)2 = SSR+ SSE n− 1 ph
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Interpretation of The Regression Parameters

x

y

β0

ŷ = β̂0 + β̂1x

∆x

∆y

β̂1 =
∆y

∆x

β̂1: the predicted change of the depen-

dent variable y when the independent

variable x changes one unit

β̂0: the predicted value of the depen-

dent variable y when the independent

variable x takes the value of 0. It may

not have actual meaning.
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BCA To Measure Protein Concentration

The BCA Protein Assay combines the well-known reduction of Cu2+ to Cu1+ by

protein in an alkaline medium with the highly sensitive and selective colorimetric

detection of the cuprous cation (Cu1+) by bicinchoninic acid (BCA).
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BCA To Measure Protein Concentration

BSA (mg/mL) Absorb.

0 0.54

1 0.59

2 0.60

4 0.71

8 0.86

16 1.08

x̄ = 5.17 ȳ = 0.73

xi − x̄ yi − ȳ

-5.17 -0.19

-4.17 -0.14

-3.17 -0.13

-1.17 -0.02

2.83 0.131

10.83 0.351

(xi − x̄)2 prod.

26.73 0.98

17.39 0.57

10.049 0.42

1.37 0.03

8.00 0.37

117.29 3.80

y = 0.0341x+ 0.554
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Assumptions For Simple Linear Regression

The “LINE” assumptions must be met when performing a simple linear regression:

• The mean of the dependent variable (E [Y |X] , µy|x) is a Linear function of X

• The errors/residuals 󰂃i|X = xi are Independent

• The errors/residuals 󰂃i|X = xi are Normally distributed

• The errors/residuals 󰂃i|X = xi have Equal variance for all xi values

(homoscedasticity)

󰂃 ∼ N (0, σ2
󰂃)
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Seaborn Tips Datasets

Food servers’ tips in restaurants may be influenced by many factors, including the nature of the restau-

rant, size of the party, and table locations in the restaurant. Restaurant managers need to know which

factors matter when they assign tables to food servers. For the sake of staff morale, they usually want

to avoid either the substance or the appearance of unfair treatment of the servers, for whom tips (at

least in restaurants in the United States) are a major component of pay. In one restaurant, a food server

recorded the following data on all customers they served during an interval of two and a half months

in early 1990. The restaurant, located in a suburban shopping mall, was part of a national chain and

served a varied menu. In observance of local law, the restaurant offered to seat in a non-smoking section

to patrons who requested it. Each record includes a day and time, and taken together, they show the

server’s work schedule.

https://www.kaggle.com/ranjeetjain3/seaborn-tips-dataset

11/15

https://www.kaggle.com/ranjeetjain3/seaborn-tips-dataset


Tips

Restaurant
Address

1 Burger £13.99

1 French fries £5.99

2 Fish & chips £11.99

1 Lamb kebab £10.99

5 Coke £3.99

AMOUNT: £74.90

TIP:

TOTAL:

Total bill Tips

16.99 1.01

10.34 1.66

21.01 3.5

23.68 3.31

24.59 3.61

25.29 4.71

8.77 2

26.88 3.12

15.04 1.96

14.78 3.23

10.27 1.71
...

...

y = 0.105x+ 0.9203

R2 = 0.4566
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The Residual Plot
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The Residual Plot
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Linear Regression

• The Simple Linear Regression Model

- Y = β0 + β1X + 󰂃

• The Multiple Linear Regression Model

- Y = β0 + β1X1 + β2X2 + β3X3 + · · ·+ βqXq + 󰂃

• The Logistic Regression Model (Y is categorical)

- Y = β0 + β1X1 + β2X2 + β3X3 + · · ·+ βqXq + 󰂃
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