# Lecture 40 Nonparametric Methods

**BIO210** Biostatistics

Xi Chen

Fall, 2024

School of Life Sciences Southern University of Science and Technology



南方科技大学生命科学学院 SUSTech · SCHOOL OF LIFE SCIENCES

## **Parametric Tests**

- 1. Specify what you are comparing.
- 2. Formulate hypotheses
- 3. Check assumptions
- 4. Determine significance level  $\alpha$
- 5. Compute the test statistic
- 6. Check significance
- 7. Make a decision about whether to reject  $H_0$
- 8. Interpret findings



**6b)** Calculate the p-value. **6c)** Construct  $(1 - \alpha) \times 100\%$  confidence interval to see if it covers the  $H_0$  value. Nonparametric tests do not rely on data following specific distribution (e.g. normal). They are also called distribution-free methods and are often used when the assumptions of parametric tests are violated.

- Wilcoxon, Frank (1945) Individual comparisons by ranking methods. Biometrics Bulletin. 1 (6): 80–83.
- Wilcoxon Sign Test
- Wilcoxon Signed-Rank Test
- Wilcoxon Rank Sum Test (Mann-Whitney U Test)

# Nonparametric Test 1 - Wilcoxon Sign Test

Wilcoxon Sign Test: A test for median of paired data. Resting energy expenditure (REE) for patients with cystic fibrosis and healthy individuals matched on age, sex, height and weight.



| Pair | REE (<br>CF | kcal/day)<br>Healthy | Difference | Sign |
|------|-------------|----------------------|------------|------|
| 1    | 1153        | 996                  | 157        | +    |
| 2    | 1132        | 1080                 | 52         | +    |
| 3    | 1165        | 1182                 | -17        | -    |
| 4    | 1460        | 1452                 | 8          | +    |
| 5    | 1634        | 1162                 | 472        | +    |
| 6    | 1493        | 1619                 | -126       | -    |
| 7    | 1358        | 1140                 | 218        | +    |
| 8    | 1453        | 1123                 | 330        | +    |
| 9    | 1185        | 1113                 | 72         | +    |
| 10   | 1824        | 1463                 | 361        | +    |
| 11   | 1793        | 1632                 | 161        | +    |
| 12   | 1930        | 1614                 | 316        | +    |
| 13   | 2075        | 1836                 | 239        | +    |



# Nonparametric Test 1 - Wilcoxon Sign Test

- 1. The null/alternative hypotheses:
- $H_0$ : no difference in REE between CF and healthy people
- $H_1$ : there is a difference
- 2. If  $H_0$  were true, we should expect similar number of "+" and "-" signs.
- 3. Under  $H_0$ :

$$D \sim B(n, 0.5) \begin{cases} D \sim \mathcal{N}\left(\frac{n}{2}, \frac{n}{4}\right), & \text{if the sample size is large enough} \\ (i.e. \text{ both } D \text{ and } n - D \text{ are more than 10}) \end{cases}$$
$$D \sim B(n, 0.5), & \text{otherwise} \end{cases}$$

# Nonparametric Test 2 - Wilcoxon Signed-Rank Test

Wilcoxon Signed-Rank Test: a test for median of paired data, but taking into account the magnitude of the difference.



| Pair | REE (kcal/day)<br>CF Healthy |      | Difference | Rank | Sign<br>+ | ed rank<br>- |
|------|------------------------------|------|------------|------|-----------|--------------|
| 1    | 1153                         | 996  | 157        | 6    | 6         |              |
| 2    | 1132                         | 1080 | 52         | 3    | 3         |              |
| 3    | 1165                         | 1182 | -17        | 2    |           | 2            |
| 4    | 1460                         | 1452 | 8          | 1    | 1         |              |
| 5    | 1634                         | 1162 | 472        | 13   | 13        |              |
| 6    | 1493                         | 1619 | -126       | 5    |           | 5            |
| 7    | 1358                         | 1140 | 218        | 8    | 8         |              |
| 8    | 1453                         | 1123 | 330        | 11   | 11        |              |
| 9    | 1185                         | 1113 | 72         | 4    | 4         |              |
| 10   | 1824                         | 1463 | 361        | 12   | 12        |              |
| 11   | 1793                         | 1632 | 161        | 7    | 7         |              |
| 12   | 1930                         | 1614 | 316        | 10   | 10        |              |
| 13   | 2075                         | 1836 | 239        | 9    | 9         |              |
|      |                              |      |            | Sum  | 84        | 7            |
|      |                              |      |            |      |           | 5/           |

# Nonparametric Test 2 - Wilcoxon Signed-Rank Test

- 1. The null/alternative hypotheses:
- $H_0$ : no difference in REE between CF and healthy people
- $H_1$ : there is a difference
- 2. If  $H_0$  were true, we should expect similar number of "+" and "-" signs, and the absolute values of the sum of positive ranks and the sum of negative ranks should be comparable.
- 3. Under  $H_0$ :

$$Z_T = \frac{T - \mu_T}{\sigma_T} \sim \mathcal{N}(0, 1)$$
 where  $\mu_T = \frac{n(n+1)}{4}$ , and  $\sigma_T = \sqrt{\frac{n(n+1)(2n+1)}{24}}$ 

# Nonparametric Test 3 - Wilcoxon Rank Sum Test

- Wilcoxon Rank Sum Test (Mann–Whitney U Test)
- A test for median of two independent samples, taking into account the magnitude of the difference.
- Data: Normalised mental age (nMA) in two populations of children suffering from phenylketonuria (unable to metabolise phenylalanine). It has been suggested that an elevated level of serum phenylalanine increases a child's likelihood of mental deficiency.

|      | Low E | posure |      |      | High E: | xposure |      |
|------|-------|--------|------|------|---------|---------|------|
| 34.5 | 47.5  | 54.0   | 37.5 | 28.0 | 45.5    | 52.0    | 35.0 |
| 48.7 | 54.0  | 39.5   | 49.0 | 46.0 | 53.0    | 37.0    | 48.0 |
| 55.0 | 40.0  | 51.0   | 56.5 | 53.0 | 37.0    | 48.3    | 54.0 |
| 45.5 | 51.0  | 57.0   | 47.0 | 43.5 | 48.7    | 54.0    | 44.0 |
| 52.0 | 58.5  | 47.0   | 53.0 | 51.0 | 55.0    |         |      |
| 58.5 |       |        |      |      |         |         |      |

#### • Wilcoxon Rank Sum Test

- Step 1: Treat two samples as one, rank by the magnitude (smallest as rank 1) while keep tracking the source of the data.

| Data: | 28.0 | 34.5 | 35.0 | 37.0 | 37.0 | 37.5 | 39.5 | 40.0 | 43.5 | 44.0 | 45.5 | 45.5 | 46.0 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Rank: | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   |
| Data: | 47.0 | 47.0 | 47.5 | 48.0 | 48.3 | 48.7 | 48.7 | 49.0 | 51.0 | 51.0 | 51.0 | 52.0 | 52.0 |
| Rank: | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   | 22   | 23   | 24   | 25   | 26   |
| Data: | 53.0 | 53.0 | 53.0 | 54.0 | 54.0 | 54.0 | 54.0 | 55.0 | 55.0 | 56.5 | 57.0 | 58.5 | 58.5 |
| Rank: | 27   | 28   | 29   | 30   | 31   | 32   | 33   | 34   | 35   | 36   | 37   | 38   | 39   |

#### • Wilcoxon Rank Sum Test

- Step 2: Identify tied values, and update the rank with the average of their ranks.

| Data: | 28.0 | 34.5 | 35.0 | 37.0 | 37.0 | 37.5 | 39.5 | 40.0 | 43.5 | 44.0 | 45.5 | 45.5 | 46.0 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Rank: | 1    | 2    | 3    | 4.5  | 4.5  | 6    | 7    | 8    | 9    | 10   | 11.5 | 11.5 | 13   |
| Data: | 47.0 | 47.0 | 47.5 | 48.0 | 48.3 | 48.7 | 48.7 | 49.0 | 51.0 | 51.0 | 51.0 | 52.0 | 52.0 |
| Rank: | 14.5 | 14.5 | 16   | 17   | 18   | 19.5 | 19.5 | 21   | 23   | 23   | 23   | 25.5 | 25.5 |
| Data: | 53.0 | 53.0 | 53.0 | 54.0 | 54.0 | 54.0 | 54.0 | 55.0 | 55.0 | 56.5 | 57.0 | 58.5 | 58.5 |
| Rank: | 28   | 28   | 28   | 31.5 | 31.5 | 31.5 | 31.5 | 34.5 | 34.5 | 36   | 37   | 38.5 | 38.5 |

## Nonparametric Test 3 - Wilcoxon Rank Sum Test

• Wilcoxon Rank Sum Test

- Step 3: Sum the ranks in each group separately, and let  ${\it W}$  be the smaller sum:

Rank Sum (Low Exposure): 467 Rank Sum (High Exposure): 313  $\Rightarrow W = 313$ 

- Step 4: Compute the test statistics:

$$Z_W = \frac{W - \mu_W}{\sigma_W}$$
 where  $\mu_W = \frac{n_S(n_S + n_L + 1)}{2}$ , and  $\sigma_W = \sqrt{\frac{n_S n_L(n_S + n_L + 1)}{12}}$ 

 $n_S$ : is the sample size of the group that has the smaller rank sum  $n_L$ : is the sample size of the group that has the larger rank sum

# Nonparametric Test 3 - Wilcoxon Rank Sum Test

## • Wilcoxon Rank Sum Test

- Step 5: calculate the p-value:
  - 5.1) The null/alternative hypotheses:

 $H_0$ : no difference in nMA medians between low and high phenylalanine exposure  $H_1$ : there is a difference

- 5.2) If  $H_0$  were true, we should expect the ranks to be distributed randomly between the two groups. Therefore, the average ranks for each sample should be approximately equal.
- 5.3) Under  $H_0$ :

# $Z_W \sim \mathcal{N}(0,1)$

5.4) The p-value can be calculated using the above property.

• Advantages: fewer assumptions, population distribution don't need to be normally distributed, test statistics based on ranks are easier to calculate.

• Disadvantages: less power, need larger sample size, not considering all information (*i.e.* only ranks).